科目: 来源: 题型:
【题目】已知圆C:x2+y2+2x﹣4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)=
sin2x﹣cos2x﹣
,(x∈R).
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
,f(C)=0,若
=(1,sinA)与
=(2,sinB)共线,求a,b的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax3+cx(a>0),其图象在点(1,f(1))处的切线与直线 x﹣6y+21=0垂直,导函数
f′(x)的最小值为﹣12.
(1)求函数f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)证明:数列{
}是等差数列;
(2)设bn=3n
,求数列{bn}的前n项和Sn .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:在四棱锥
中,底面
为菱形,且
,
底面
,
,
,
是
上点,且
平面
.
![]()
(1)求证:
;(2)求三棱锥
的体积.
【答案】(1)见解析;(2)
.
【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据
底面
得
,再根据线面垂直判定定理得
面
即可得结果(2)记
与
的交点为
,则BD 为高,三角形POE为底,根据锥体体积公式求体积
试题解析:(1)
面
![]()
(2)记
与
的交点为
,连接![]()
平面
![]()
在
中:
,
,
, ![]()
在
中:
,
,则
,即
,
则
![]()
【题型】解答题
【结束】
21
【题目】已知椭圆
:
的离心率
,且其的短轴长等于
.
![]()
(1)求椭圆
的标准方程;
(2)如图,记圆
:
,过定点
作相互垂直的直线
和
,直线
(斜率
)与圆
和椭圆
分别交于
、
两点,直线
与圆
和椭圆
分别交于
、
两点,若
与
面积之比等于
,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)求函数
的单调区间和极值.
【答案】(1)
;(2)见解析.
【解析】试题分析:(1)根据导数几何意义得
,再与
联立方程组解得
,
(2)先函数导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值
试题解析:(1)
,切线为
,即斜率
,纵坐标![]()
即
,
,解得
, ![]()
解析式![]()
(2)
,定义域为![]()
得到
在
单增,在
单减,在
单增
极大值
,极小值
.
【题型】解答题
【结束】
20
【题目】如图:在四棱锥
中,底面
为菱形,且
,
底面
,
,
,
是
上点,且
平面
.
![]()
(1)求证:
;(2)求三棱锥
的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
:
的焦点
为圆
的圆心.
(1)求抛物线
的标准方程;
(2)若斜率
的直线
过抛物线的焦点
与抛物线相交于
两点,求弦长
.
【答案】(1)
;(2)8.
【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长
.
试题解析:(1)圆的标准方程为
,圆心坐标为
,
即焦点坐标为
,得到抛物线
的方程: ![]()
(2)直线
:
,联立
,得到![]()
弦长
![]()
【题型】解答题
【结束】
19
【题目】已知函数
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)求函数
的单调区间和极值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大小;
(2)若sinB+sinC=1,试判断△ABC的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com