精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 的焦点为圆的圆心.

(1)求抛物线的标准方程;

(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.

【答案】(1);(2)8.

【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长.

试题解析:(1)圆的标准方程为,圆心坐标为

即焦点坐标为,得到抛物线的方程:

(2)直线 ,联立,得到

弦长

型】解答
束】
19

【题目】已知函数在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间和极值.

【答案】(1);(2)见解析.

【解析】试题分析:(1)根据导数几何意义得,再与联立方程组解得 (2)先函数导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值

试题解析:(1),切线为,即斜率,纵坐标

,解得

解析式

(2) ,定义域为

得到单增,在单减,在单增

极大值,极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的面积为且与轴、轴分别交于两点.

1)求圆的方程;

(2)若直线与线段相交,求实数的取值范围;

(3)试讨论直线与(1)小题所求圆的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在其定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点分别为 ),求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左右焦点分别为 右支上的点,线段的左支于点,若是边长等于的等边三角形,则双曲线的标准方程为( )

A. B. C. D.

【答案】A

【解析】

即双曲线的标准方程为,选A.

型】单选题
束】
11

【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为,则张师傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组中的两个函数是同一函数的有几组

(1)y1=y2=x–5; (2)y1=y2=

(3)fx)=xgx)= (4)fx)=Fx)=x

A. 0组 B. 1组 C. 2组 D. 组3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+cx(a>0),其图象在点(1,f(1))处的切线与直线 x﹣6y+21=0垂直,导函数
f′(x)的最小值为﹣12.
(1)求函数f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为D,且同时满足以下条件:

在D上是单调递增或单调递减函数;

存在闭区间 D(其中),使得当时,的取值集合也是.那么,我们称函数 ()是闭函数.

(1)判断是不是闭函数?若是找出条件中的区间;若不是,说明理由.

(2)若是闭函数,求实数的取值范围.

注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

同步练习册答案