【题目】已知抛物线: 的焦点为圆的圆心.
(1)求抛物线的标准方程;
(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.
【答案】(1);(2)8.
【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长.
试题解析:(1)圆的标准方程为,圆心坐标为,
即焦点坐标为,得到抛物线的方程:
(2)直线: ,联立,得到
弦长
【题型】解答题
【结束】
19
【题目】已知函数在点处的切线方程为.
(1)求函数的解析式;
(2)求函数的单调区间和极值.
科目:高中数学 来源: 题型:
【题目】已知圆的面积为,且与轴、轴分别交于两点.
(1)求圆的方程;
(2)若直线与线段相交,求实数的取值范围;
(3)试讨论直线与(1)小题所求圆的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线: 的左右焦点分别为、, 为右支上的点,线段交的左支于点,若是边长等于的等边三角形,则双曲线的标准方程为( )
A. B. C. D.
【答案】A
【解析】
即双曲线的标准方程为,选A.
【题型】单选题
【结束】
11
【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为,则张师傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组中的两个函数是同一函数的有几组?
(1)y1=,y2=x–5; (2)y1=,y2=;
(3)f(x)=x,g(x)=; (4)f(x)=,F(x)=x.
A. 0组 B. 1组 C. 2组 D. 组3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+cx(a>0),其图象在点(1,f(1))处的切线与直线 x﹣6y+21=0垂直,导函数
f′(x)的最小值为﹣12.
(1)求函数f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为D,且同时满足以下条件:
①在D上是单调递增或单调递减函数;
②存在闭区间 D(其中),使得当时,的取值集合也是.那么,我们称函数 ()是闭函数.
(1)判断是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.
(2)若是闭函数,求实数的取值范围.
(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2, .
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com