【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2, .
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点为圆的圆心.
(1)求抛物线的标准方程;
(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.
【答案】(1);(2)8.
【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长.
试题解析:(1)圆的标准方程为,圆心坐标为,
即焦点坐标为,得到抛物线的方程:
(2)直线: ,联立,得到
弦长
【题型】解答题
【结束】
19
【题目】已知函数在点处的切线方程为.
(1)求函数的解析式;
(2)求函数的单调区间和极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,AB为⊙O直径,直线CD与⊙O相切与E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,连接AE,BE.证明:
(1)∠FEB=∠CEB;
(2)EF2=ADBC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过原点且与直线相切于点
(Ⅰ)求圆的方程;
(Ⅱ)在圆上是否存在两点关于直线对称,且以线段为直径的圆经过原点?若存在,写出直线的方程;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且 = .
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥中,顶点在底面的射影为.给出下列命题:
①若、、两两互相垂直,则为的垂心;
②若、、两两互相垂直,则有可能为钝角三角形;
③若,且与重合,则三棱锥的各个面都是直角三角形;
④若,且为边的中点,则.
其中正确命题的序号是__________.(把你认为正确的序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com