【题目】已知双曲线
:
的左右焦点分别为
、
,
为
右支上的点,线段
交
的左支于点
,若
是边长等于
的等边三角形,则双曲线的标准方程为( )
A.
B.
C.
D. ![]()
【答案】A
【解析】
即双曲线的标准方程为
,选A.
【题型】单选题
【结束】
11
【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为
,则张师傅的材料利用率的最大值等于(注:材料利用率=
)( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
![]()
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”.已知“网购达人”与“网购探者”人数的比例为2:3.
![]()
(1)确定
的值,并补全频率分布直方图;
(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日被评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f(
)=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f(
)=﹣
,α∈(
,π),求sin(α+
)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为
,则张师傅的材料利用率的最大值等于(注:材料利用率=
)( )
A.
B.
C.
D. ![]()
【答案】C
【解析】设球半径为R,圆柱的体积为
时圆柱的体积最大为
,因此材料利用率=
,选C.
点睛:空间几何体与球接、切问题的求解方法
求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.
【题型】单选题
【结束】
12
【题目】已知抛物线
:
在点
处的切线与曲线
:
相切,若动直线
分别与曲线
、
相交于
、
两点,则
的最小值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点
为圆
的圆心.
(1)求抛物线
的标准方程;
(2)若斜率
的直线
过抛物线的焦点
与抛物线相交于
两点,求弦长
.
【答案】(1)
;(2)8.
【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长
.
试题解析:(1)圆的标准方程为
,圆心坐标为
,
即焦点坐标为
,得到抛物线
的方程: ![]()
(2)直线
:
,联立
,得到![]()
弦长
![]()
【题型】解答题
【结束】
19
【题目】已知函数
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)求函数
的单调区间和极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.
(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;
(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn= ![]()
(1)求证:数列{
}为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com