【题目】已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f(
)=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f(
)=﹣
,α∈(
,π),求sin(α+
)的值.
【答案】
(1)解:f(
)=﹣(a+1)sinθ=0,
∵θ∈(0,π).
∴sinθ≠0,
∴a+1=0,即a=﹣1
∵f(x)为奇函数,
∴f(0)=(a+2)cosθ=0,
∴cosθ=0,θ= ![]()
(2)解:由(1)知f(x)=(﹣1+2cos2x)cos(2x+
)=cos2x(﹣sin2x)=﹣
,
∴f(
)=﹣
sinα=﹣
,
∴sinα=
,
∵α∈(
,π),
∴cosα=
=﹣
,
∴sin(α+
)=sinαcos
+cosαsin
= ![]()
【解析】(1)把x=
代入函数解析式可求得a的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.(2)利用f(
)=﹣
和函数的解析式可求得sin
,进而求得cos
,进而利用二倍角公式分别求得sinα,cosα,最后利用两角和与差的正弦公式求得答案.
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
科目:高中数学 来源: 题型:
【题目】几位同学在研究函数
时,给出了下面几个结论:
①
的单调减区间是
,单调增区间是
;
②若
,则一定有
;
③函数
的值域为
;
④若规定
,
,则
对任意
恒成立.
上述结论中正确的是____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以坐标原点
为圆心的圆与抛物线
相交于不同的两点
,
,与抛物线
的准线相交于不同的两点
,
,且
.
(1)求抛物线
的方程;
(2)若不经过坐标原点
的直线
与抛物线
相交于不同的两点
,
,且满足
.证明直线
过定点
,并求出点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
:
的左右焦点分别为
、
,
为
右支上的点,线段
交
的左支于点
,若
是边长等于
的等边三角形,则双曲线的标准方程为( )
A.
B.
C.
D. ![]()
【答案】A
【解析】
即双曲线的标准方程为
,选A.
【题型】单选题
【结束】
11
【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为
,则张师傅的材料利用率的最大值等于(注:材料利用率=
)( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组中的两个函数是同一函数的有几组?
(1)y1=
,y2=x–5; (2)y1=
,y2=
;
(3)f(x)=x,g(x)=
; (4)f(x)=
,F(x)=x
.
A. 0组 B. 1组 C. 2组 D. 组3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为D,且
同时满足以下条件:
①
在D上是单调递增或单调递减函数;
②存在闭区间
D(其中
),使得当
时,
的取值集合也是
.那么,我们称函数
(
)是闭函数.
(1)判断
是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.
(2)若
是闭函数,求实数
的取值范围.
(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com