科目: 来源: 题型:
【题目】某车间将
名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的茎叶图如图,已知两组技工在单位时间内加工的合格零件的平均数都为
.
![]()
(1)求
,
的值;
(2)求甲、乙两组技工在单位时间内加工的合格零件的方差
和
,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于
,则称该车间“质量合格”,求该车间“质量合格”的概率.
附:方差
,其中
为数据
的平均数
查看答案和解析>>
科目: 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( )![]()
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
,椭圆
:
(
)的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为坐标原点.
(1)求
的方程;
(2)设过点
的动直线
与
相交于
,
两点,当
的面积最大时,求
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
R,函数
=
.
(1)当
时,解不等式
>1;
(2)若关于
的方程
+
=0的解集中恰有一个元素,求
的值;
(3)设
>0,若对任意
,函数
在区间
上的最大值与最小值的差不超过1,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知标有1~20号的小球20个,若我们的目的是估计总体号码的平均值,即20个小球号码的平均值.试验者从中抽取4个小球,以这4个小球号码的平均值估计总体号码的平均值,按下面方法抽样(按小号到大号排序):
(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.
(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于无穷数列{
}与{
},记A={
|
=
,
},B={
|
=
,
},若同时满足条件:①{
},{
}均单调递增;②
且
,则称{
}与{
}是无穷互补数列.
(1)若
=
,
=
,判断{
}与{
}是否为无穷互补数列,并说明理由;
(2)若
=
且{
}与{
}是无穷互补数列,求数列{
}的前16项的和;
(3)若{
}与{
}是无穷互补数列,{
}为等差数列且
=36,求{
}与{
}得通项公式.
查看答案和解析>>
科目: 来源: 题型:
【题目】双曲线
的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为
,
是等边三角形,求双曲线的渐近线方程;
(2)设
,若l的斜率存在,且|AB|=4,求l的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】(2017湖北部分重点中学高三联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为( )
A. 483 B. 482
C. 481 D. 480
查看答案和解析>>
科目: 来源: 题型:
【题目】用分期付款方式购买家用电器一件,价格为1150元,购买当天先付150元,以后每月这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的第一个月开始算分期付款的第一个月,全部欠款付清后,买这件家电实际付款______元.
查看答案和解析>>
科目: 来源: 题型:
【题目】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为
,
;1小时以上且不超过2小时离开的概率分别为
,
;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com