相关习题
 0  259311  259319  259325  259329  259335  259337  259341  259347  259349  259355  259361  259365  259367  259371  259377  259379  259385  259389  259391  259395  259397  259401  259403  259405  259406  259407  259409  259410  259411  259413  259415  259419  259421  259425  259427  259431  259437  259439  259445  259449  259451  259455  259461  259467  259469  259475  259479  259481  259487  259491  259497  259505  266669 

科目: 来源: 题型:

【题目】20172月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中准备参加”“不准备参加待定的人数如表:

准备参加

不准备参加

待定

男生

30

6

15

女生

15

9

25

(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在准备参加”“不准备参加待定的同学中应各抽取多少人?

(2)准备参加的同学中用分层抽样方法抽取6,从这6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.

()A1被选中的概率;

()A1,B1不全被选中的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点A(﹣1,0),B(1,0)为双曲线 =1(a>0,b>0)的左右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为(
A.x2 =1
B.x2 =1
C.x2﹣y2=1
D.x2 =1

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两人都准备于下午12:00-13:00之间到某车站乘某路公交车外出,设在12:00-13:00之间有四班该路公交车开出,已知开车时间分别为12:20,12:30,12:40,13:00,分别求他们在下述情况下坐同一班车的概率.

(1)他们各自选择乘坐每一班车是等可能的;

(2)他们各自到达车站的时刻是等可能的(有车就乘).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=|ax﹣1|
(1)若f(x)≤2的解集为[﹣3,1],求实数a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),圆C的参数方程为 (θ为常数).
(1)求直线l和圆C的普通方程;
(2)若直线l与圆C有公共点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).

一年级

二年级

三年级

男同学

女同学

(1)用表中字母列举出所有可能的结果;

(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.

(1)求直方图中x的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xoy中,曲线C1的参数方程为 (α为参数),曲线C2的参数方程为 (β为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和曲线C2的极坐标方程;
(2)已知射线l1:θ=α( <α< ),将射线l1顺时针方向旋转 得到l2:θ=α﹣ ,且射线l1与曲线C1交于两点,射线l2与曲线C2交于O,Q两点,求|OP||OQ|的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于函数的对称性有如下结论:对于给定的函数,如果对于任意的都有成立为常数),则函数关于点对称.

(1)用题设中的结论证明:函数关于点

(2)若函数既关于点对称,又关于点对称,且当时,,求:的值;

时,的表达式.

查看答案和解析>>

同步练习册答案