科目: 来源: 题型:
【题目】如图,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
=λ(0<λ<1) ![]()
(1)求证:不论λ为何值,总有EF⊥平面ABC:
(2)若λ=
,求三棱锥A﹣BEF的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】一支车队有
辆车,某天依次出发执行运输任务。第一辆车于下午
时出发,第二辆车于下午
时
分出发,第三辆车于下午
时
分出发,以此类推。假设所有的司机都连续开车,并都在下午
时停下来休息.
到下午
时,最后一辆车行驶了多长时间?
如果每辆车的行驶速度都是
,这个车队当天一共行驶了多少
?
查看答案和解析>>
科目: 来源: 题型:
【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:
转速 | 8 | 10 | 12 | 14 | 16 |
每小时生产有缺点的零件数 | 5 | 7 | 8 | 9 | 11 |
(1)如果
对
有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有1个,那么机器的运转速度应控制在什么范围内?参考公式:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列{an}的前n项和记为Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比数列,求Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】在外接圆直径为1的△ABC中,角A,B,C的对边分别为a,b,c,设向量
=(a,cosB),
=(b,cosA),且
∥
,
≠
.
(1)求sinA+sinB的取值范围;
(2)若abx=a+b,试确定实数x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函f(x)=ax2﹣ex(a∈R). (Ⅰ)a=1时,试判断f(x)的单调性并给予证明;
(Ⅱ)若f(x)有两个极值点x1 , x2(x1<x2).
(i) 求实数a的取值范围;
(ii)证明:﹣
. (注:e是自然对数的底数)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
=1的左焦点F1的坐标为(﹣
,0),F2是它的右焦点,点M是椭圆C上一点,△MF1F2的周长等于4+2
.
(1)求椭圆C的方程;
(2)过定点P(0,2)作直线l与椭圆C交于不同的两点A,B,且OA⊥OB(其中O为坐标原点),求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1 , ∠BAC=90°,A1A⊥平面ABC,A1A=
,AB=
,AC=2,A1C1=1,
=
. (Ⅰ)证明:BC⊥平面A1AD
(Ⅱ)求二面角A﹣CC1﹣B的余弦值.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】张三同学从每年生日时对自己的身高测量后记录如表:
(附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
)
(1)求身高
关于年龄
的线性回归方程;(可能会用到的数据:
(cm))
(2)利用(1)中的线性回归方程,分析张三同学
岁起到
岁身高的变化情况,如
岁之前都符合这一变化,请预测张三同学
岁时的身高。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com