科目: 来源: 题型:
【题目】已知函数f0(x)=
(x>0),设fn(x)为fn﹣1(x)的导数,n∈N* .
(1)求2f1(
)+
f2(
)的值;
(2)证明:对任意n∈N* , 等式|nfn﹣1(
)+
fn(
)|=
都成立.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f (x)=ex,g(x)=x-b,b∈R.
(1)若函数f (x)的图象与函数g(x)的图象相切,求b的值;
(2)设T(x)=f (x)+ag(x),a∈R,求函数T(x)的单调增区间;
(3)设h(x)=|g(x)|·f (x),b<1.若存在x1,x2
[0,1],使|h(x1)-h(x2)|>1成立,求b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1 , x2 , x3 , 随机变量X表示x1 , x2 , x3中的最大数,求X的概率分布和数学期望E(X).
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,且2a5-a3=13,S4=16.
(1)求数列{an}的前n项和Sn;
(2)设Tn=
(-1)iai,若对一切正整数n,不等式 λTn<[an+1+(-1)n+1an]·2n-1 恒成立,求实数 λ 的取值范围;
(3)是否存在正整数m,n(n>m>2),使得S2,Sm-S2,Sn-Sm成等比数列?若存在,求出所有的m,n;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ex+e﹣x , 其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】据监测,在海滨某城市附近的海面有一台风. 台风中心位于城市
的东偏南
方向、距离城市
的海面
处,并以
的速度向西偏北
方向移动(如图示).如果台风侵袭范围为圆形区域,半径
,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_____ .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某礼品店要制作一批长方体包装盒,材料是边长为
的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是
的正方形,然后在余下两个角处各切去一个长、宽分别为
、
的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.
![]()
(1)求包装盒的容积
关于
的函数表达式,并求函数的定义域;
(2)当
为多少时,包装盒的容积最大?最大容积是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=
. ![]()
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com