相关习题
 0  259811  259819  259825  259829  259835  259837  259841  259847  259849  259855  259861  259865  259867  259871  259877  259879  259885  259889  259891  259895  259897  259901  259903  259905  259906  259907  259909  259910  259911  259913  259915  259919  259921  259925  259927  259931  259937  259939  259945  259949  259951  259955  259961  259967  259969  259975  259979  259981  259987  259991  259997  260005  266669 

科目: 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)当时,讨论的单调性;

3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设n是正整数,r为正有理数.
(1)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(参考数据:
(2)证明:
(3)设x∈R,记[x]为不小于x的最小整数,例如 .令 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设二次函数f(x)ax2bx.

(1)1≤f(1)≤2,2≤f(1)≤4,求f(2)的取值范围;

(2)b1时,若对任意x[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.

I求张同学至少取到1道乙类题的概率;

II已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列{an}满足a1=2,an1an=3·22n1.

(1)求数列{an}的通项公式;

(2)bnnan,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1 , C2的四个交点按纵坐标从大到小依次为A,B,C,D,记 ,△BDM和△ABN的面积分别为S1和S2

(1)当直线l与y轴重合时,若S1=λS2 , 求λ的值;
(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知方程的四个根组成一个首项为的等差数列,则_____

查看答案和解析>>

科目: 来源: 题型:

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0
(1)求p0的值;
(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.

(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足 .记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中,,且,其中分别是线段的中点。

1)证明:平面

2)证明:平面

3)求:直线与平面所成角的正弦值

查看答案和解析>>

同步练习册答案