相关习题
 0  259835  259843  259849  259853  259859  259861  259865  259871  259873  259879  259885  259889  259891  259895  259901  259903  259909  259913  259915  259919  259921  259925  259927  259929  259930  259931  259933  259934  259935  259937  259939  259943  259945  259949  259951  259955  259961  259963  259969  259973  259975  259979  259985  259991  259993  259999  260003  260005  260011  260015  260021  260029  266669 

科目: 来源: 题型:

【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

为了预测印刷千册时每册的成本费建立了两个回归模型.

(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)

(2)根据所给数据和(1)中的模型选择,求关于的回归方程并预测印刷千册时每册的成本费.

附:对于一组数据,…,其回归方程的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数.

(Ⅰ)若函数上存在零点,求实数的取值范围;

(Ⅱ)若函数处的切线方程为.求证:对任意的,总有.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,

(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;

〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为( )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知ab为正实数.

(1)求证:ab

(2)利用(1)的结论求函数y(0<x<1)的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从名手机使用者中随机抽取名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是: .

1)根据频率分布直方图,估计这名手机使用者中使用时间的中位数是多少分钟? (精确到整数)

2)估计手机使用者平均每天使用手机多少分钟? (同一组中的数据以这组数据所在区间中点的值作代表)

3)在抽取的名手机使用者中在中按比例分别抽取人和人组成研究小组,然后再从研究小组中选出名组长.求这名组长分别选自的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中有大小、形状完全相同的四个小球,分别写有和、“谐”、“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和曲线的极坐标方程;

(2)若射线与曲线分别交于两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列的前项和为,且.

1)求数列的通项公式;

2)已知,记),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;

3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中是自然常数.

(1)判断函数内零点的个数,并说明理由;

(2),使得不等式成立,试求实数的取值范围.

查看答案和解析>>

同步练习册答案