相关习题
 0  259926  259934  259940  259944  259950  259952  259956  259962  259964  259970  259976  259980  259982  259986  259992  259994  260000  260004  260006  260010  260012  260016  260018  260020  260021  260022  260024  260025  260026  260028  260030  260034  260036  260040  260042  260046  260052  260054  260060  260064  260066  260070  260076  260082  260084  260090  260094  260096  260102  260106  260112  260120  266669 

科目: 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为

判断直线l与圆C的交点个数;

若圆C与直线l交于AB两点,求线段AB的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=.

(1)判断函数f(x)的奇偶性;

(2)判断并用定义证明函数f(x)在其定义域上的单调性.

(3)若对任意的t1,不等式f()+f()<0恒成立,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆的参数方程为为参数),若是圆轴正半轴的交点,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,设过点的圆的切线为.

(1)求直线的极坐标方程;

(2)求圆上到直线的距离最大的点的直角坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x= 处的切线与直线4x+y=0平行,求a的值;
(2)讨论函数f(x)的单调区间;
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0 , 证明f′(x0)<0.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若,且关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知各项都是正数的数列{an}的前n项和为Sn , Sn=an2+ an , n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=1,bn﹣bn1=2an(n≥2),求数列{ }的前n项和Tn
(3)若Tn≤λ(n+4)对任意n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函数f(x)有且只有一个极值点,求实数a的取值范围;
(2)对于函数f(x)、f1(x)、f2(x),若对于区间D上的任意一个x,都有f1(x)<f(x)<f2(x),则称函数f(x)是函数f1(x)、f2(x)在区间D上的一个“分界函数”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 问是否存在实数a,使得f(x)是函数f1(x)、f2(x)在区间(1,+∞)上的一个“分界函数”?若存在,求实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为美化环境,某市计划在以两地为直径的半圆弧上选择一点建造垃圾处理厂(如图所示).已知两地的距离为,垃圾场对某地的影响度与其到该地的距离有关,对两地的总影响度对地的影响度和对地影响度的和.记点到地的距离为,垃圾处理厂对两地的总影响度为.统计调查表明:垃圾处理厂对地的影响度与其到地距离的平方成反比,比例系数为;对地的影响度与其到地的距离的平方成反比,比例系数为.当垃圾处理厂建在弧的中点时,对两地的总影响度为.

(1)将表示成的函数;

(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对两地的总影响度最小?若存在,求出该点到地的距离;若不存在,说明理由.

查看答案和解析>>

同步练习册答案