相关习题
 0  259969  259977  259983  259987  259993  259995  259999  260005  260007  260013  260019  260023  260025  260029  260035  260037  260043  260047  260049  260053  260055  260059  260061  260063  260064  260065  260067  260068  260069  260071  260073  260077  260079  260083  260085  260089  260095  260097  260103  260107  260109  260113  260119  260125  260127  260133  260137  260139  260145  260149  260155  260163  266669 

科目: 来源: 题型:

【题目】某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作

1)令,求的取值范围;

2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.

)求的分布列;

)若要求,确定的最小值;

)以购买易损零件所需费用的期望值为决策依据,在之中选其一,应选用哪个?

查看答案和解析>>

科目: 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

1)求所取3张卡片上的数字完全相同的概率;

2表示所取3张卡片上的数字的中位数,求的分布列与数学期望.

(注:若三个数满足,则称为这三个数的中位数).

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξη,已知甲、乙两名射手在每次射击中射中的环数大于6且甲射中10,9,8,7环的概率分别为0.5,3aa,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.

(1)ξη的分布列;

(2)ξη的数学期望与方差并以此比较甲、乙的射击技术.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解一种植物的生长情况抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示.

(1)求该植物样本高度的平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);

(2)假设该植物的高度Z服从正态分布N(μσ2),其中μ近似为样本平均数xσ2近似为样本方差s2利用该正态分布求P(64.5<Z<96).

(附:=10.5.ZN(μσ2),P(μσZμσ)=0.682 6,P(μ-2σZμ+2σ)=0.954 4)

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系xoy中,椭圆C1 + =1(a>b>0)的离心率为 ,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.
(1)求椭圆的方程;
(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

12

63

86

182

92

61

4

乙厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

29

71

85

159

76

62

18

(1)试分别估计两个分厂生产的零件的优质品率;

(2)由以上统计数据填下面列联表,并问是否有的把握认为“两个分厂生产的零件的质量有差异”.

甲 厂

乙 厂

合计

优质品

非优质品

合计

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点.
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:

①从中任取3球,恰有一个白球的概率是

②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为

③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为

④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.

其中所有正确结论的序号是________

查看答案和解析>>

科目: 来源: 题型:

【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)

非读书迷

读书迷

合计

15

45

合计


(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关? 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案