精英家教网 > 高中数学 > 题目详情

【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

12

63

86

182

92

61

4

乙厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

29

71

85

159

76

62

18

(1)试分别估计两个分厂生产的零件的优质品率;

(2)由以上统计数据填下面列联表,并问是否有的把握认为“两个分厂生产的零件的质量有差异”.

甲 厂

乙 厂

合计

优质品

非优质品

合计

附:

【答案】(1) 72% 64% (2) 99%的把握认为两个分厂生产的零件的质量有差异

【解析】解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为72%

乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为64%.

(2)


甲厂

乙厂

合计

优质品

360

320

680

非优质品

140

180

320

合计

500

500

1 000

χ2≈7.356.635

所以有99%的把握认为两个分厂生产的零件的质量有差异

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)= (a∈R)是奇函数,函数g(x)= 的定义域为(﹣2,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣2,+∞)上单调递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列四个命题:
p1:若直线l和平面α内的无数条直线垂直,则l⊥α;
p2:若f(x)=2x﹣2x , 则x∈R,f(﹣x)=﹣f(x);
p3:若 ,则x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,则sinA>sinB.
其中真命题的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求证:f(x)为奇函数;
(3)若f(k3x)+f(3x﹣9x﹣4)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的对边a、b、c成等差数列,且A﹣C=90°,则cosB=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.

(1)求椭圆的方程;

(2)动直线 )交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点.

(1)求椭圆的方程;

(2)若不经过点的直线交于两点,且直线与直线的斜率之和为,证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x﹣sinxcosx﹣sin2x.

(Ⅰ)求函数f(x)取得最大值时x的集合;

(Ⅱ) 设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值.

查看答案和解析>>

同步练习册答案