科目: 来源: 题型:
【题目】方程的曲线即为函数的图像,对于函数,有如下结论:①在上单调递减;②函数不存在零点;③函数的值域是;④的图像不经过第一象限,其中正确结论的个数是___________
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线与的交点的轨迹为曲线,若,且是曲线上不同的点,满足,则的取值范围为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F.
(1)求证:C、D、G、E四点共圆.
(2)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围;
(2)记两个极值点分别为x1 , x2 , 且x1<x2 . 已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y= x2的焦点,离心率等于 .
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若 =λ1 , ,求证:λ1+λ2为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学根据2002﹣2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核远拔进入这三个社团成功与否相互独立,2015年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m, ,n,已知三个社团他都能进入的概率为 ,至少进入一个社团的概率为 ,且m>n.
(1)求m与n的值;
(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修字分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课字分分数的分布列及期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为, 倾斜角为的直线经过椭圆的右焦点且与圆相切.
(1)求椭圆 的方程;
(2)若直线与圆相切于点, 且交椭圆于两点,射线于椭圆交于点,设的面积与的面积分别为.
①求的最大值; ②当取得最大值时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(Ⅰ)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1与平面B1EC所成锐二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com