科目: 来源: 题型:
【题目】(
分)已知椭圆
的左焦点为
,过
的直线
与
交于
、
两点.
(
)求椭圆
的离心率.
(
)当直线
与
轴垂直时,求线段
的长.
(
)设线段
的中点为
,
为坐标原点,直线
交椭圆
交于
、
两点,是否存在直线
使得
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=m﹣|2x+1|﹣|2x﹣3|,若x0∈R,不等式f(x0)≥0成立,
(1)求实数m的取值范围;
(2)若x+2y﹣m=6,是否存在x,y,使得x2+y2=19成立,若存在,求出x,y值,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的参数方程是
(θ为参数),曲线C与l的交点的极坐标为(2,
)和(2,
),
(1)求直线l的普通方程;
(2)设P点为曲线C上的任意一点,求P点到直线l的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知圆O的内接四边形BCED,BC为圆O的直径,BC=2,延长CB,ED交于A点,使得∠DOB=∠ECA,过A作圆O的切线,切点为P,![]()
(1)求证:BD=DE;
(2)若∠ECA=45°,求AP2的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)=
x2﹣kx;
(1)设k=m+
(m>0),若函数h(x)=f(x)+g(x)在区间(0,2)内有且仅有一个极值点,求实数m的取值范围;
(2)设M(x)=f(x)﹣g(x),若函数M(x)存在两个零点x1 , x2(x1>x2),且满足2x0=x1+x2 , 问:函数M(x)在(x0 , M(x0))处的切线能否平行于直线y=1,若能,求出该切线方程,若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,F是椭圆P:
(a>b>0)的右焦点,已知A(0,﹣2)与椭圆左顶点关于直线y=x对称,且直线AF的斜率为
,
(1)求椭圆P的方程;
(2)过点Q(﹣1,0)的直线l交椭圆P于M、N两点,交直线x=﹣4于点E,
=
,
=
,证明:λ+μ为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】己知圆
的圆心在直线
上,且过点
,与直线
相切.
(
)求圆
的方程.
(
)设直线
与圆
相交于
,
两点.求实数
的取值范围.
(
)在(
)的条件下,是否存在实数
,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:
车型 | A型 | B型 | C型 |
频数 | 20 | 40 | 40 |
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
价格(万元) | 25 | 23.5 | 22 | 20.5 |
销售量(辆) | 30 | 33 | 36 | 39 |
已知A型汽车的购买量y与价格x符合如下线性回归方程:
=
x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com