科目: 来源: 题型:
【题目】已知椭圆C的长轴长为
,左焦点的坐标为(﹣2,0);
(1)求C的标准方程;
(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且
,试求直线l的倾斜角.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知正三棱柱ABC﹣A1B1C1的底面积为
,侧面积为36; ![]()
(1)求正三棱柱ABC﹣A1B1C1的体积;
(2)求异面直线A1C与AB所成的角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为( )
A.![]()
B.3
C.![]()
D.2
查看答案和解析>>
科目: 来源: 题型:
【题目】设M,N为两个随机事件,给出以下命题: (1.)若M、N为互斥事件,且
,
,则
;
(2.)若
,
,
,则M、N为相互独立事件;
(3.)若
,
,
,则M、N为相互独立事件;
(4.)若
,
,
,则M、N为相互独立事件;
(5.)若
,
,
,则M、N为相互独立事件;
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为( )
A.80
B.96
C.108
D.110
查看答案和解析>>
科目: 来源: 题型:
【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:|
a+
b|<
;
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为
为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ
(1)求圆C的直角坐标方程;
(2)若点P(1,2),设圆C与直线l交于点A、B,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xlnx﹣k(x﹣1)
(1)求f(x)的单调区间;并证明lnx+
≥2(e为自然对数的底数)恒成立;
(2)若函数f(x)的一个零点为x1(x1>1),f'(x)的一个零点为x0 , 是否存在实数k,使
=k,若存在,求出所有满足条件的k的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图. ![]()
(1)求这100份数学试卷的样本平均分
和样本方差s2(同一组中的数据用该组区间的中点值作代表)
(2)由直方图可以认为,这批学生的数学总分Z服从正态分布N(μ,σ2),其中μ近似为样本平均数
,σ2近似为样本方差s2 . ①利用该正态分布,求P(81<z<119);
②记X表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求EX(用样本的分布区估计总体的分布).
附:
≈19,
≈18,若Z=~N(μ,2),则P(μ﹣σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,Q为AD的中点,M是棱PC的中点,PA=PD=PC,BC=
AD=2,CD=4 ![]()
(1)求证:直线PA∥平面QMB;
(2)若二面角P﹣AD﹣C为60°,求直线PB与平面QMB所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com