科目: 来源: 题型:
【题目】如图,四边形
为菱形,四边形
为平行四边形,设
与
相交于点
,
.![]()
(1)证明:平面
平面
;
(2)若
与平面
所成角为60°,求二面角
的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
在区间
上的最大值为4,最小值为1.
(1)求实数
、
的值;
(2)记
,若
在
上是单调函数,求实数
的取值范围;
(3)对于函数
,用
,1,2,
,
,
将区间
任意划分成
个小区间,若存在常数
,使得和式
对任意的划分恒成立,则称函数
为
上的有界变差函数.记
,试判断函数
是否为在
上的有界变差函数?若是,求
的最小值;若不是,请说明理由.
(参考公式:![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是双曲线
的右焦点,过点
作
的一条渐近线的垂线,垂足为
,线段
与
相交于点
,记点
到
的两条渐近线的距离之积为
,若
,则该双曲线的离心率是( )
A.![]()
B.2
C. 3
D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体 在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图 如图所示,用一个与该几何体的下底面平行相距为 h(0<h<2) 的平面截该几何体,则截面面积为 ( )
A.![]()
B.![]()
C.![]()
D.π(4-h2)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C:
+
=1,直线l:
(t为参数)
(1)写出曲线C的参数方程,直线l的普通方程.
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(选修4﹣1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.![]()
(1)证明:DB=DC;
(2)设圆的半径为1,BC=
,延长CE交AB于点F,求△BCF外接圆的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com