相关习题
 0  260942  260950  260956  260960  260966  260968  260972  260978  260980  260986  260992  260996  260998  261002  261008  261010  261016  261020  261022  261026  261028  261032  261034  261036  261037  261038  261040  261041  261042  261044  261046  261050  261052  261056  261058  261062  261068  261070  261076  261080  261082  261086  261092  261098  261100  261106  261110  261112  261118  261122  261128  261136  266669 

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】

(1)证明:存在唯一实数,使得直线和曲线相切;

(2)若不等式有且只有两个整数解,求的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018山西太原市高三3月模拟已知椭圆的左、右顶点分别为,右焦点为,点在椭圆上.

I求椭圆方程;

II若直线与椭圆交于两点,已知直线相交于点,证明:点在定直线上,并求出定直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,

(1)求证:

(2)若分别为的中点,平面,求直线与平面所成角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;

附:回归方程,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点在椭圆 为椭圆的右焦点, 分别为椭圆的左,右两个顶点.若过点且斜率不为0的直线与椭圆交于两点,且线段的斜率之积为.

1求椭圆的方程

2已知直线相交于点证明: 三点共线.

查看答案和解析>>

科目: 来源: 题型:

【题目】以原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为:,在平面直角坐标系中,直线的方程为为参数).

(1)求曲线和直线的直角坐标方程;

(2)已知直线交曲线两点,求两点的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:

时间长(小时)

女生人数

4

11

3

2

0

男生人数

3

17

6

3

1

(1)求这50名学生本周使用手机的平均时间长;

(2)时间长为的7名同学中,从中抽取两名,求其中恰有一个女生的概率;

(3)若时间长为被认定“不依赖手机”,被认定“依赖手机”,根据以上数据完成列联表:

不依赖手机

依赖手机

总计

女生

男生

总计

能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考已知函数(其中为常数, 为自然对数的底数, ).

)若函数的极值点只有一个,求实数的取值范围;

)当时,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

同步练习册答案