科目: 来源: 题型:
【题目】某代卖店代售的某种快餐,深受广大消费者喜爱,该种快餐每份进价为8元,并以每份12元的价格销售.如果当天19:00之前卖不完,剩余的该种快餐每份以5元的价格作特价处理,且全部售完.
(1)若这个代卖店每天定制15份该种快餐,求该种类型快餐当天的利润y(单位:元)关于当天需求量x(单位:份,)的函数解析式;
(2)该代卖点记录了一个月30天的每天19:00之前的销售数量该种快餐日需求量,统计数据如下:
日需求量 | 12 | 13 | 14 | 15 | 16 | 17 |
天数 | 4 | 5 | 6 | 8 | 4 | 3 |
以30天记录的日需求量的频率作为日需求量发生的概率,假设这个代卖店在这一个月内每天都定制15份该种快餐.
(i)求该种快餐当天的利润不少于52元的概率.
(ii)求这一个月该种快餐的日利润的平均数(精确到0.1).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线,焦点为,准线为,线段的中点为.点是上在轴上方的一点,且点到的距离等于它到原点的距离.
(1)求点的坐标;
(2)过点作一条斜率为正数的直线与抛物线从左向右依次交于两点,求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,双十一购物狂欢节(简称“双11”)活动已成为中国电子商务行业年度盛事,某网络商家为制定2018年“双11”活动营销策略,调查了2017年“双11”活动期间每位网购客户用于网购时间(单位:小时),发现近似服从正态分布.
(1)求的估计值;
(2)该商家随机抽取参与2017年“双11”活动的10000名网购客户,这10000名客户在2017年“双11”活动期间,用于网购时间属于区间的客户数为.该商家计划在2018年“双11”活动前对这名客户发送广告,所发广告的费用为每位客户0.05元.
(i)求该商家所发广告总费用的平均估计值;
(ii)求使取最大值时的整数的值.
附:若随机变量服从正态分布,则,
,.
查看答案和解析>>
科目: 来源: 题型:
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程.
(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:);
(2)试估计:①该县第一年养殖山羊多少万只?
②到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足,其中,为常数.已知销售价格为7元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品成本为5元/千克,试确定销售价格值,使商场每日销售该商品所获利润最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆:,其长轴是短轴的两倍,以某短轴顶点和长轴顶点为端点的线段作为直径的圆的周长为,直线与椭圆交于,两点.
(1)求椭圆的方程;
(2)过点作直线的垂线,垂足为.若,求点的轨迹方程;
(3)设直线,,的斜率分别为,,,其中且.设的面积为.以、为直径的圆的面积分别为,,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,将圆上每一点的横坐标保持不变,纵坐标变为原来的倍,再把所得曲线上每一点向下平移1个单位得到曲线.以为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)写出的参数方程和的直角坐标方程;
(2)设点在上,点在上,求使取最小值时点的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(,且).
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在上的最大值.
【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .
【解析】【试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得在上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.
【试题解析】
(Ⅰ),
设 ,则.
∵, ,∴在上单调递增,
从而得在上单调递增,又∵,
∴当时, ,当时, ,
因此, 的单调增区间为,单调减区间为.
(Ⅱ)由(Ⅰ)得在上单调递减,在上单调递增,
由此可知.
∵, ,
∴.
设,
则 .
∵当时, ,∴在上单调递增.
又∵,∴当时, ;当时, .
①当时, ,即,这时, ;
②当时, ,即,这时, .
综上, 在上的最大值为:当时, ;
当时, .
[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
【题型】解答题
【结束】
22
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .
(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;
( Ⅱ ) 设直线 与轴和轴的交点分别为,为圆上的任意一点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com