相关习题
 0  261134  261142  261148  261152  261158  261160  261164  261170  261172  261178  261184  261188  261190  261194  261200  261202  261208  261212  261214  261218  261220  261224  261226  261228  261229  261230  261232  261233  261234  261236  261238  261242  261244  261248  261250  261254  261260  261262  261268  261272  261274  261278  261284  261290  261292  261298  261302  261304  261310  261314  261320  261328  266669 

科目: 来源: 题型:

【题目】如图,在三棱椎中,侧棱底面分别是线段的中点,过线段的中点的平行线,分别交于点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:椭圆的顶点为,左右焦点分别为

(1)求椭圆的方程;

(2)过右焦点的直线与椭圆相交于两点,试探究在轴上是否存在定点,使得为定值?若存在求出点的坐标,若不存在请说明理由?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ) 当时,求函数的单调区间;

(Ⅱ)求函数在区间上的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】

购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

)求一投保人在一年度内出险的概率

)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

查看答案和解析>>

科目: 来源: 题型:

【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

项目

男性

女性

总计

反感

10

不反感

8

总计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.

(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?

(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

5.5

8.7

1.9

301.4

79.75

385

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知,若直线于点,点是直线上的一动点,是线段的中点,且,点的轨迹为曲线

(1)求曲线的方程;

(2)过点作直线于点,交轴于点,过作直线于点.试判断是否为定值?若是,求出其定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,

(1)相交于点,且平面,求实数的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①;根据2010年至2016年的数据(时间变量的值依次为)建立模型②

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

同步练习册答案