【题目】如图:椭圆
的顶点为
,左右焦点分别为
,
,![]()
![]()
(1)求椭圆
的方程;
(2)过右焦点
的直线
与椭圆
相交于
两点,试探究在
轴上是否存在定点
,使得
为定值?若存在求出点
的坐标,若不存在请说明理由?
科目:高中数学 来源: 题型:
【题目】如图,半径为2的圆内有两条圆弧,一质点M自点A开始沿弧A-B-C-O-A-D-C做匀速运动,则其在水平方向(向右为正)的速度
的图像大致为( )
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合
.对于
的一个子集
,若存在不大于
的正整数
,使得对于
中的任意一对元素
,都有
,则称
具有性质
.
(Ⅰ)当
时,试判断集合
和
是否具有性质
?并说明理由.
(Ⅱ)若
时,
①若集合
具有性质
,那么集合
是否一定具有性质
?并说明理由;
②若集合
具有性质
,求集合
中元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).在以原点
为极点,
轴正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)求直线
的极坐标方程和曲线
的直角坐标方程;
(2)若直线
与曲线
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数
与月份
之间的回归直线方程
;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数u(x)=xlnx,v(x)
x﹣1,m∈R.
(1)令m=2,求函数h(x)
的单调区间;
(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1
e(e为自然对数的底数)求x1x2的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:
![]()
(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
![]()
(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)
(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件
为“其中2 个成绩分别属于不同的同学”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,记
为
的导函数.
(1)若
的极大值为
,求实数
的值;
(2)若函数
,求
在
上取到最大值时
的值;
(3)若关于
的不等式
在
上有解,求满足条件的正整数
的集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com