科目: 来源: 题型:
【题目】设集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集个数为4,求a的范围;
(2)若a∈Z,当A∩B≠
时,求a的最小值,并求当a取最小值时A∪B.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数
的图象顶点为
,且图象在
轴上截得的线段长为8.
(1)求函数
的解析式;
(2)令
.
(ⅰ)求函数
在
上的最小值;
(ⅱ)若
时,不等式
恒成立,试求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
的方程为
,其中
.
(1)求证:直线
恒过定点;
(2)当
变化时,求点
到直线
的距离的最大值;
(3)若直线
分别与
轴、
轴的负半轴交于
两点,求
面积的最小值及此时直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为![]()
且
;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为
分,乙和丙最后得分都是
分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )
A. 乙有四场比赛获得第三名
B. 每场比赛第一名得分
为![]()
C. 甲可能有一场比赛获得第二名
D. 丙可能有一场比赛获得第一名
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:某快递小哥从
地出发,沿小路
以平均时速20公里
小时,送快件到
处,已知
(公里),
,
是等腰三角形,
.
(1) 试问,快递小哥能否在50分钟内将快件送到
处?
(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路
追赶,若汽车平均时速60公里
小时,问,汽车能否先到达
处?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设
多个分支机构,需要国内公司外派大量
后、
后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从
后和
后的员工中随机调查了
位,得到数据如下表:
![]()
(1)根据调查的数据,是否有
以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司举行参观驻海外分支机构的交流体验活动,拟安排
名参与调查的
后、
后员工参加.
后员工中有愿意被外派的
人和不愿意被外派的
人报名参加,从中随机选出
人,记选到愿意被外派的人数为
;
后员工中有愿意被外派的
人和不愿意被外派的
人报名参加,从中随机选出
人,记选到愿意被外派的人数为
,求
的概率.
参考数据:
![]()
(参考公式:,其中
).
查看答案和解析>>
科目: 来源: 题型:
【题目】中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔
(单位:分钟)满足
,经测算,高铁的载客量与发车时间间隔
相关:当
时高铁为满载状态,载客量为
人;当
时,载客量会在满载基础上减少,减少的人数与
成正比,且发车时间间隔为
分钟时的载客量为
人.记发车间隔为
分钟时,高铁载客量为
.
求
的表达式;
若该线路发车时间间隔为
分钟时的净收益
(元),当发车时间间隔为多少时,单位时间的净收益
最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com