科目: 来源: 题型:
【题目】如图,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:
①与所成角的正切值是;
②;
③是;
④平面平面;
⑤直线与平面所成角为30°.
其中正确的有________.(填写你认为正确的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1:ax+3y+6=0,l2:2x+(a+1)y+6=0与圆C:x2+y2+2x=b2-1(b>0)的位置关系是“平行相交”,则实数b的取值范围为 ( )
A. (, ) B. (0, )
C. (0, ) D. (, )∪(,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减,②存在常数,使其值域为,则称函数是函数的“渐近函数”.
(1)判断函数是不是函数的“渐近函数”,说明理由;
(2)求证:函数不是函数的“渐近函数”;
(3)若函数,,求证:当且仅当时,是的“渐近函数”.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆 的两个焦点为,点P在椭圆C 上,且 , ,.
(1)求椭圆C的方程;
(2)若直线L过点交椭圆于A、B两点,且点M为线段AB的中点,求直线L的一般方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列四种说法:①函数的单调递增区间是;②函数与的值域相同;③函数与均是奇函数;④若函数在上有零点,则实数的取值范围是.其中正确结论的序号是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,.
(1)证明函数为奇函数;
(2)判断函数的单调性(无需证明),并求函数的值域;
(3)是否存在实数,使得的最大值为?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其它成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).
(Ⅰ)求的函数关系式;
(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com