相关习题
 0  261467  261475  261481  261485  261491  261493  261497  261503  261505  261511  261517  261521  261523  261527  261533  261535  261541  261545  261547  261551  261553  261557  261559  261561  261562  261563  261565  261566  261567  261569  261571  261575  261577  261581  261583  261587  261593  261595  261601  261605  261607  261611  261617  261623  261625  261631  261635  261637  261643  261647  261653  261661  266669 

科目: 来源: 题型:

【题目】如图,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:

所成角的正切值是

④平面平面

⑤直线与平面所成角为30°.

其中正确的有________.(填写你认为正确的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1ax3y60l22x(a1)y60与圆Cx2y22xb21(b>0)的位置关系是“平行相交”,则实数b的取值范围为 (   )

A. ( ) B. (0 )

C. (0 ) D. ( )(,+∞)

查看答案和解析>>

科目: 来源: 题型:

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减,②存在常数,使其值域为,则称函数是函数的“渐近函数”.

(1)判断函数是不是函数的“渐近函数”,说明理由;

(2)求证:函数不是函数的“渐近函数”;

(3)若函数,求证:当且仅当时,的“渐近函数”.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 经过点,焦距为.

(1)求椭圆的标准方程;

(2)直线与椭圆交于不同的两点,线段的垂直平分线交轴交于点,若,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆 的两个焦点为,点P在椭圆C 上,且 ,.

(1)求椭圆C的方程;

(2)若直线L过点交椭圆于A、B两点,且点M为线段AB的中点,求直线L的一般方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】.已知函数.

(1)求过点图象的切线方程;

(2)若函数存在两个极值点 ,求的取值范围;

(3)当时,均有恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 经过点,焦距为.

(1)求椭圆的标准方程;

(2)直线与椭圆交于不同的两点,线段的垂直平分线交轴交于点,若,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四种说法:①函数的单调递增区间是;②函数的值域相同;③函数均是奇函数;④若函数上有零点,则实数的取值范围是.其中正确结论的序号是_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)证明函数为奇函数;

(2)判断函数的单调性(无需证明),并求函数的值域;

(3)是否存在实数,使得的最大值为?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其它成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).

(Ⅰ)求的函数关系式;

(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案