相关习题
 0  261617  261625  261631  261635  261641  261643  261647  261653  261655  261661  261667  261671  261673  261677  261683  261685  261691  261695  261697  261701  261703  261707  261709  261711  261712  261713  261715  261716  261717  261719  261721  261725  261727  261731  261733  261737  261743  261745  261751  261755  261757  261761  261767  261773  261775  261781  261785  261787  261793  261797  261803  261811  266669 

科目: 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的体积是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为ODEF为圆O上的点,△DBC,△ECA,△FAB分别是以BCCAAB为底边的等腰三角形。沿虚线剪开后,分别以BCCAAB为折痕折起△DBC,△ECA,△FAB,使得DEF重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______

查看答案和解析>>

科目: 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等腰梯形ABCD(如图1所示),其中ABCDEF分别为ABCD的中点,且ABEF=2,CD=6,MBC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图2所示),N是线段CD上一动点,且.

(1)求证:MN∥平面EFDA

(2)求三棱锥AMNF的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数同时满足:(1)对于定义域上的任意,恒有;(2)对于定义域上的任意,当时,恒有,则称函数为“理想函数”.给出下列四个函数中:①; ②; ③;④,则被称为“理想数”的有________(填相应的序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,OACBD的交点,EAD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1

(2)设MOD的中点,证明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的菱形且平面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某农业合作社生产了一种绿色蔬菜共吨,如果在市场上直接销售,每吨可获利万元;如果进行精加工后销售,每吨可获利万元,但需另外支付一定的加工费,总的加工(万元)与精加工的蔬菜量(吨)有如下关系:设该农业合作社将(吨)蔬菜进行精加工后销售,其余在市场上直接销售,所得总利润(扣除加工费)为(万元).

(1)写出关于的函数表达式;

(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,ADDCABBCQD⊥平面ABCDPAQDPA=1,ADABQD=2.

(1)求证:平面PAB⊥平面QBC

(2)求该组合体QPABCD的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,PA⊥底面ABCDPA=2,∠ABC=90°,BC=1, ,∠ACD=60°,ECD的中点.

(1)求证:BC∥平面PAE

(2)求点A到平面PCD的距离.

查看答案和解析>>

同步练习册答案