相关习题
 0  261686  261694  261700  261704  261710  261712  261716  261722  261724  261730  261736  261740  261742  261746  261752  261754  261760  261764  261766  261770  261772  261776  261778  261780  261781  261782  261784  261785  261786  261788  261790  261794  261796  261800  261802  261806  261812  261814  261820  261824  261826  261830  261836  261842  261844  261850  261854  261856  261862  261866  261872  261880  266669 

科目: 来源: 题型:

【题目】()bc分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2bxc=0实根的个数(重根按一个计).

(1)求方程x2bxc=0有实根的概率.

(2)ξ的分布列和数学期望.

(3)求在先后两次出现的点数中有5的条件下,方程x2bxc=0有实根的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】水葫芦原产于巴西,年作为观赏植物引入中国. 现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长. 某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过个月其覆盖面积为,经过个月其覆盖面积为. 现水葫芦覆盖面积(单位)与经过时间个月的关系有两个函数模型可供选择.

(参考数据:

Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;

Ⅱ)求原先投放的水葫芦的面积并求约经过几个月该水域中水葫芦面积是当初投放的.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3 ,直线 与抛物线 交于 两点, 为坐标原点。

(1)求抛物线的方程;

(2)求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)求的最小正周期;

2)求的最值及取最值时相应的x的值;

3)求函数的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】()(2017·衡水二模)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于65则中二等奖,等于4则中三等奖,其余结果为不中奖.

(1)求中二等奖的概率.

(2)求不中奖的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于两点.若双曲线的离心率为的面积为为坐标原点,则抛物线的焦点坐标为 ( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,且处的切线与平行.

的单调区间;

若存在区间,使上的值域是,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.

=19,yx的函数解析式;

若要求需更换的易损零件数不大于的频率不小于0.5,的最小值;

假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

科目: 来源: 题型:

【题目】()(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.

(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.

(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:

计算说明哪位运动员的成绩更稳定.

查看答案和解析>>

同步练习册答案