精英家教网 > 高中数学 > 题目详情

【题目】()bc分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2bxc=0实根的个数(重根按一个计).

(1)求方程x2bxc=0有实根的概率.

(2)ξ的分布列和数学期望.

(3)求在先后两次出现的点数中有5的条件下,方程x2bxc=0有实根的概率.

【答案】(1) (2)见解析(3)

【解析】试题分析:(1)由题意知,本题是一个等可能事件的概率,试验发生包含的基本事件总数为6×6,满足条件的事件是使方程有实根,则△=b2-4c≥0,对于c的取值进行列举,得到事件数,根据概率公式得到结果.
(2)由题意知用随机变量ξ表示方程x2+bx+c=0实根的个数得到ξ的可能取值0,1,2根据第一问做出的结果写出变量对应的概率,写出分布列和期望.
(3)在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,这是一个条件概率,做出先后两次出现的点数中有5的概率和先后两次出现的点数中有5的条件下且方程x2+bx+c=0有实根的概率,根据条件概率的公式得到结果.

试题解析:

(1)基本事件总数为6×6=36,

若使方程有实根,则Δb2-4c≥0,即

c=1时,b=2,3,4,5,6;

c=2时,b=3,4,5,6;

c=3时,b=4,5,6;

c=4时,b=4,5,6;

c=5时,b=5,6;

c=6时,b=5,6,

目标事件个数为5+4+3+3+2+2=19,

因此方程x2bxc=0有实根的概率为

(2)由题意知,ξ=0,1,2,则

P(ξ=0)=P(ξ=1)=P(ξ=2)=

ξ的分布列为

ξ

0

1

2

P

ξ的数学期望E(ξ)=0×+1×+2×=1.

(3)先后两次出现的点数中有5”为事件M,“方程ax2bxc=0有实根为事件N,则P(M)=P(MN)=

P(N|M)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线过定点.

(1)若与圆相切,求的方程;

(2)若与圆相交于两点,线段的中点为,又的交点为,判断是否为定值.若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下说法:

一年按365天计算,两名学生的生日相同的概率是;买彩票中奖的概率为0.001,那么买1 000张彩票就一定能中奖;乒乓球赛前,决定谁先发球,抽签方法是从1~1010个数字中各抽取1,再比较大小,这种抽签方法是公平的;昨天没有下雨,则说明昨天气象局的天气预报降水概率是90%”是错误的.

根据我们所学的概率知识,其中说法正确的序号是___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

求函数的单调区间;

求证:

恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于两点.若双曲线的离心率为的面积为为坐标原点,则抛物线的焦点坐标为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高

气温

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.

(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题:

①若是第一象限角,且,则

②函数是偶函数;

③函数的一个对称中心是

④函数上是增函数,

所有正确命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a

时,若处取得极小值,求a的值;

时.

若函数在区间上单调递增,求b的取值范围;

若存在实数,使得,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线和圆是直线上一点,过点作圆的两条切线,切点分别为.

1)若,求点坐标;

2)若圆上存在点,使得,求点的横坐标的取值范围;

3)设线段的中点为轴的交点为,求线段长的最大值.

查看答案和解析>>

同步练习册答案