科目: 来源: 题型:
【题目】如图,已知四棱锥
,
平面
,底面
中,
,
,且
,
为
的中点.
![]()
(1)求证:平面
平面
;
(2)问在棱
上是否存在点
,使
平面
,若存在,请求出二面角
的余弦值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
Ⅰ
若曲线
在点
处的切线与直线
垂直,求函数
的单调区间;
Ⅱ
若对于
都有
成立,试求a的取值范围;
Ⅲ
记
当
时,函数
在区间
上有两个零点,求实数b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角梯形
中,
,
,
,
,
,
为线段
(含端点)上的一个动点.设
,
,对于函数
,下列描述正确的是( )
A.
的最大值和
无关B.
的最小值和
无关
C.
的值域和
无关D.
在其定义域上的单调性和
无关
查看答案和解析>>
科目: 来源: 题型:
【题目】随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了
名男生、
名女生进行为期一周的跟踪调查,调查结果如表所示:
平均每天使用手机超过 | 平均每天使用手机不超过 | 合计 | |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
(1)能否在犯错误的概率不超过
的前提下认为学生使用手机的时间长短与性别有关?
(2)在这
名女生中,调查小组发现共有
人使用国产手机,在这
人中,平均每天使用手机不超过
小时的共有
人.从平均每天使用手机超过
小时的女生中任意选取
人,求这
人中使用非国产手机的人数
的分布列和数学期望.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥
的底面是边长为2的正方形,
垂直于底面
,
.
![]()
(1)求证
;
(2)求平面
与平面
所成二面角的大小;
(3)设棱
的中点为
,求异面直线
与
所成角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】网络直播是一种新兴的网络社交方式,网络直播平台也成为了一种崭新的社交媒体.很多人选择在快手、抖音等网络直播平台上分享自己的生活点滴.2020年的寒假,注定不凡.因为新冠病毒疫情的影响,开学延迟了,老师们停课不停教,在网络上直播授课;同学们停课不停学,在家上网课.某网络社交平台为了了解网络直播在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你直播过吗?”其中,回答“直播过”的共有
个人.把这
个人按照年龄分成5组:第1组
,第2组
,第3组
,第4组
,第5组
,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.
![]()
(1)求
和
的值,并根据频率分布直方图估计这组数据的众数;
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在极坐标系中,直线
的极坐标方程为
,现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求直线
的直角坐标方程和曲线
的普通方程;
(2)若曲线
为曲线
关于直线
的对称曲线,点
分别为曲线
、曲线
上的动点,点
坐标为
,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球.
(1)若从中一次性(任意)摸出2个球,求恰有一个黑球和一个红球的概率;
(2)若从中任取一个球给小朋友甲,然后再从中任取一个球给小朋友乙,求甲、乙两位小朋友拿到的球中恰好有一个黑球的概率.
(3)若从中连续取两次,每次取一球后放回,求取出的两个球恰好有一个黑球的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com