相关习题
 0  261769  261777  261783  261787  261793  261795  261799  261805  261807  261813  261819  261823  261825  261829  261835  261837  261843  261847  261849  261853  261855  261859  261861  261863  261864  261865  261867  261868  261869  261871  261873  261877  261879  261883  261885  261889  261895  261897  261903  261907  261909  261913  261919  261925  261927  261933  261937  261939  261945  261949  261955  261963  266669 

科目: 来源: 题型:

【题目】四棱锥,底面是边长为的菱形,侧面底面,, , 中点,在侧棱.

求证: ;

中点,求二面角的余弦值;

是否存在,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数

(1)若函数为奇函数,求m的值;

(2)若函数上是增函数,求实数m的取值范围;

(3)若函数上的最小值为,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某登山队在山脚处测得山顶的仰角为,沿倾斜角为(其中)的斜坡前进后到达处,休息后继续行驶到达山顶

1)求山的高度

2)现山顶处有一塔.从的登山途中,队员在点处测得塔的视角为.若点处高度,则为何值时,视角最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了解甲、乙两班学生的学业水平,从两班中各随机抽取人参加学业水平等级考试,得到学生的学业成绩茎叶图如图:

Ⅰ)通过茎叶图比较甲、乙两班学生的学业成绩平均值及方差的大小;(只需写出结论)

(Ⅱ)根据学生的学业成绩,将学业水平分为三个等级:

根据所给数据,频率可以视为相应的概率.

i)从甲、乙两班中各随机抽取,记事件:“抽到的甲班学生的学业水平高于乙班学生的学业水平等级”,发生的概率;

ii从甲班中随机抽取,为学业水平优秀的人数,的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数下列命题:( )

函数的图象关于原点对称; 函数是周期函数;

,函数取最大值;函数的图象与函数的图象没有公共点,其中正确命题的序号是

(A)①③ (B)②③ (C)①④ (D)②④

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一条动直线3(m+1)x+(m-1)y-6m-2=0

1)求证:直线恒过定点,并求出定点P的坐标;

2)若直线与xy轴的正半轴分别交于AB两点,O为坐标原点,是否存在直线满足下列条件:①AOB的周长为12;②△AOB的面积为6,若存在,求出方程;若不存在,请说明理由.

3)若直线与xy轴的正半轴分别交于AB两点,当取最小值时,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】新冠肺炎疫情期间,为了减少外出聚集,“线上买菜”受追捧.某电商平台在地区随机抽取了位居民进行调研,获得了他们每个人近七天“线上买菜”消费总金额(单位:元),整理得到如图所示频率分布直方图.

1)求的值;

2)从“线上买菜”消费总金额不低于元的被调研居民中,随机抽取位给予奖品,求这位“线上买菜”消费总金额均低于元的概率;

3)若地区有万居民,该平台为了促进消费,拟对消费总金额不到平均水平一半的居民投放每人元的电子补贴.假设每组中的数据用该组区间的中点值代替,试根据上述频率分布直方图,估计该平台在地区拟投放的电子补贴总金额.

查看答案和解析>>

科目: 来源: 题型:

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为2的正方体ABCD-A1B1C1D1中,EBC的中点,FDD1的中点,

1)求证:CF∥平面A1DE

2)求平面A1DE与平面A1DA夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1EBC的中点.

1)求证:AEB1C

2)求异面直线AEA1C所成的角的大小;

3)若GC1C中点,求二面角C-AG-E的正切值.

查看答案和解析>>

同步练习册答案