科目: 来源: 题型:
【题目】已知直线
.
(1)若直线不经过第四象限,求
的取值范围;
(2)若直线
交
轴负半轴于
,交
轴正半轴于
,求
的面积的最小值并求此时直线
的方程;
(3)已知点
,若点
到直线
的距离为
,求
的最大值并求此时直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金
万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金
万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入
、种黄瓜的年收入
与各自的资金投入
(单位:万元)满足
,
.设甲大棚的资金投入为
(单位:万元),每年两个大棚的总收入为
(单位:万元).
(1)求
的值;
(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入
最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,动点
到定点
的距离与它到直线
的距离相等.
(1)求动点
的轨迹
的方程;
(2)设动直线
与曲线
相切于点
,与直线
相交于点
.
证明:以
为直径的圆恒过
轴上某定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
(
)的离心率为
,且点
在椭圆
上,设与
平行的直线
与椭圆
相交于
,
两点,直线
,
分别与
轴正半轴交于
,
两点.
(I)求椭圆
的标准方程;
(Ⅱ)判断
的值是否为定值,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益
与投资额
成正比,且投资1万元时的收益为
万元,投资股票等风险型产品的收益
与投资额
的算术平方根成正比,且投资1万元时的收益为0.5万元,
(1)分别写出两种产品的收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com