精英家教网 > 高中数学 > 题目详情

【题目】已知,函数

1)若关于的方程的解集中恰有一个元素,求的值;

2)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.

【答案】1.2

【解析】

1)代入解析式表示出方程并化简,对二次项系数分类讨论,即可确定只有一个元素时的值;

2)由对数函数性质可知函数在区间上单调递减,由题意代入可得,化简不等式并分离参数后构造函数,利用函数的单调性求出构造函数的最值,即可求得的取值范围.

1)关于的方程

代入可得

由对数运算性质可得,化简可得

时,代入可得,解得,代入经检验可知,

满足关于的方程的解集中恰有一个元素,

时,则,解得

再代入方程可解得,代入经检验可知,

满足关于的方程的解集中恰有一个元素,

综上可知,.

2)若,对任意,函数在区间上单调递减,

由题意可知

化简可得,即,所以

时,,当时,

,设

所以是增函数,

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的导数,若存在,使得成立,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有两个不同的零点.

(1)求的取值范围;

(2)设 的两个零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线轴所成的锐角为,直线轴所成的锐角为,判断的大小关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2a·4x-2x-1.

(1)当a=1时,解不等式f(x)>0;

(2)当a=,x∈[0,2]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,(i)求曲线在点处的切线方程;

(ii)求函数的单调区间;

(Ⅱ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

若曲线处的切线斜率为0,求a的值;

(Ⅱ)若恒成立,求a的取值范围;

(Ⅲ)求证:当时,曲线 (x>0)总在曲线的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从高一年级随机选取100名学生,对他们期中考试的数学和语文成绩进行分析,成绩如图所示.

(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;

(II)从语文成绩大于80分的学生中随机选取两人,记这两人中数学成绩高于80分的人数为,求的分布列和数学期望(

(Ill)试判断这100名学生数学成绩的方差与语文成绩的方差的大小.(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面 分别是线段 的中点, .

求证: 平面

求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案