精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线轴所成的锐角为,直线轴所成的锐角为,判断的大小关系并加以证明.

【答案】;(.

【解析】试题分析:根据椭圆的离心率为,且过点结合性质 ,列出关于 的方程组,求出 即可得椭圆的方程;( 的大小关系只需看两直线斜率之间的关系,设联立,消去,利用斜率公式以及韦达定理,化简可得直线的倾斜角互补,可得.

试题解析:(由题可得,解得.

所以椭圆的方程为.

结论: ,理由如下:

由题知直线斜率存在,

.

联立,

消去,

由题易知恒成立,

由韦达定理得,

因为斜率相反且过原点,

, ,

联立

消去,

由题易知恒成立,

由韦达定理得,

因为两点不与重合,

所以直线存在斜率,

所以直线的倾斜角互补,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的周期为3的奇函数,且当时,,则方程在区间上的解得个数是( )

A. B. 6 C. 7 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

【答案】(1)见解析;(2)

【解析】(1)证明略;(2)直线的方程为,圆的方程为.或直线的方程为,圆的方程为

试题分析:(1)设出点的坐标,联立直线与抛物线的方程,由斜率之积为可得,即得结论;(2)结合(1)的结论求得实数的值,分类讨论即可求得直线的方程和圆的方程.

试题解析:(1)设.

可得,则.

,故.

因此的斜率与的斜率之积为,所以.

故坐标原点在圆上.

(2)由(1)可得.

故圆心的坐标为,圆的半径.

由于圆过点,因此,故

由(1)可得.

所以,解得.

时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.

时,直线的方程为,圆心的坐标为,圆的半径为,圆 的方程为.

【名师点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.中点弦问题,可以利用点差法,但不要忘记验证或说明中点在曲线内部.

型】解答
束】
21

【题目】已知函数

(1)若,求a的值;

(2)设m为整数,且对于任意正整数n,,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)证明:

2)证明:对任何正整数n,存在多项式函数,使得对所有实数x均成立,其中均为整数,当n为奇数时,,当n为偶数时,

3)利用(2)的结论判断是否为有理数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(60分及以上为及格).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入世纪以来,该产品的产量平稳增长.记年为第年,且前年中,第年与年产量万件之间的关系如下表所示:

近似符合以下三种函数模型之一:

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,年的年产量比预计减少,试根据所建立的函数模型,确定年的年产量.

查看答案和解析>>

同步练习册答案