精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

若曲线处的切线斜率为0,求a的值;

(Ⅱ)若恒成立,求a的取值范围;

(Ⅲ)求证:当时,曲线 (x>0)总在曲线的上方.

【答案】(I). (II).(III)见解析.

【解析】试题分析:(Ⅰ)利用导函数在x=0处的值等于零,可以求出a的值.

(Ⅱ).三种情况讨论求的最小值即可;

(Ⅲ)时,构造,证明

试题解析:(I)函数的定义域为.

因为所以.

.

(II).

时,令.

时,时,.

上单调递减,在上单调递增.

所以当时,有最小值.

恒成立”等价于“最小值大于等于0”,即.

因为,所以.

时,符合题意;

时,取,则,不符合题意.

综上,若恒成立,则的取值范围为.

(III)时,令,可求.

因为,且上单调递增,

所以在(0,)上存在唯一的,使得,即,且

.

变化时,在(0,)上的情况如下:

0

极小

则当时,存在最小值,.

因为,所以.

所以当时,

所以当时,曲线总在曲线的上方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于,②,③,④,⑤与⑥,选择恰当的关系式序号填空:

1)角为第一象限角的充要条件是_____

2)角为第二象限角的充要条件是_____

3)角为第三象限角的充要条件是_____

4)角为第四象限角的充要条件是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前n项和为,记 ,…, 中奇数的个数为

(Ⅰ)若= n,请写出数列的前5项;

(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;

(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

1)若关于的方程的解集中恰有一个元素,求的值;

2)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和.已知

(Ⅰ)求{an}的通项公式;

(Ⅱ)令,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用适当的方法表示下列集合:

1)一年中有31天的月份的全体;

2)大于小于12.8的整数的全体;

3)梯形的全体构成的集合;

4)所有能被3整除的数的集合;

5)方程的解组成的集合;

6)不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,点GH分别为边CDDA的中点,点M是线段BE上的动点.

I)求证:GHDM

II)当三棱锥D-MGH的体积最大时,求点A到面MGH的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

甲:8281797895889384;乙:9295807583809085

1 用茎叶图表示这两组数据,并计算平均数与方差;

2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中两个)考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为的菱形中,.点分别在边上,点与点不重合,.沿翻折到的位置,使平面平面.

(1)求证:平面

(2)当与平面所成的角为时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案