科目: 来源: 题型:
【题目】某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为1km的扇形,中心角().为方便观赏,增加收入,在种植区域外围规划观赏区(区域II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形,其中点,分别在边和上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求的最大值;
(2)试问:当为多少时,年总收入最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中.
Ⅰ当时,恒成立,求a的取值范围;
Ⅱ设是定义在上的函数,在内任取个数,,,,,设,令,,如果存在一个常数,使得恒成立,则称函数在区间上的具有性质P.试判断函数在区间上是否具有性质P?若具有性质P,请求出M的最小值;若不具有性质P,请说明理由.注:
查看答案和解析>>
科目: 来源: 题型:
【题目】药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量单位:千克是每平方米种植株数x的函数.当x不超过4时,v的值为2;当时,v是x的一次函数,其中当x为10时,v的值为4;当x为20时,v的值为0.
当时,求函数v关于x的函数表达式;
当每平方米种植株数x为何值时,每平方米药材的年生长总量单位:千克取得最大值?并求出这个最大值.年生长总量年平均生长量种植株数
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合,其中,由中的元素构成两个相应的集合:
, .
其中是有序数对,集合和中的元素个数分别为和.
若对于任意的,总有,则称集合具有性质.
(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.
(Ⅱ)对任何具有性质的集合,证明.
(Ⅲ)判断和的大小关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1:(α为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-4ρcosθ-3=0,直线l的极坐标方程为θ=(ρ∈R).
(Ⅰ)求曲线C1的极坐标方程与直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C1,C2在第一象限分别交于A,B两点,P为曲线C1上的动点,求△PAB面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ln(x+1)+ax2-x.
(Ⅰ)讨论f(x)在[0,+∞)上的单调性;
(Ⅱ)若函数g(x)=f(x)+x有两个极值点x1,x2,且x1<x2,求证:g(x2)>-ln2.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四棱锥的底面ABCD是菱形,平面ABCD,,,F,G分别为PD,BC中点,.
(Ⅰ)求证:平面PAB;
(Ⅱ)求三棱锥的体积;
(Ⅲ)求证:OP与AB不垂直.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=,下列结论中错误的是
A. , f()=0
B. 函数y=f(x)的图像是中心对称图形
C. 若是f(x)的极小值点,则f(x)在区间(-∞,)单调递减
D. 若是f(x)的极值点,则()=0
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l1:y=x,l2:y=-x,动点P,Q分别在l1,l2上移动,|PQ|=2,N是线段PQ的中点,记点N的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点M(0,1)分别作直线MA,MB交曲线C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com