【题目】某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为1km的扇形
,中心角
(
).为方便观赏,增加收入,在种植区域外围规划观赏区(区域II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,离心率
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)设过点
且不与坐标轴垂直的直线交椭圆
于
、
两点,线段
的垂直平分线与
轴交于点
,求点
的横坐标的取值范围;
(3)在第(2)问的条件下,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于 O的两点.
(1)求抛物线C的方程;
(2)若直线AB过点(8,0),求证:直线OA,OB的斜率之积为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若对定义域内的任意
,都有
成立,求实数
的值;
(2)若函数
的定义域上是单调函数,求实数
的取值范围;
(3)若
,证明对任意的正整数
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆上的点,直线
与
(
为坐标原点)的斜率之积为
.若动点
满足
,试探究是否存在两个定点
,使得
为定值?若存在,求
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入
袋或
袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.
(Ⅰ)求小球落入
袋中的概率
;
(Ⅱ)在容器入口处依次放入4个小球,记
为落入
袋中小球的个数,试求
的概率和
的数学期望
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,四边形
是菱形,
,
,
是
上任意一点。
![]()
(1)求证:
;
(2)当
面积的最小值是9时,在线段
上是否存在点
,使
与平面
所成角的正切值为2?若存在?求出
的值,若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com