精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点F(1,0),O为坐标原点,AB是抛物线C上异于 O的两点.

(1)求抛物线C的方程;

(2)若直线AB过点(8,0),求证:直线OAOB的斜率之积为定值

【答案】(1);(2)详见解析.

【解析】

1)根据抛物线方程和焦点坐标得,从而可得抛物线方程;(2)当斜率不存在时,求出交点坐标,从而得到;当斜率存在时,联立直线方程与抛物线方程,可得韦达定理的形式,列出,代入韦达定理,整理可得,从而可证得结论.

(1)抛物线的焦点坐标为

抛物线的方程为

(2)证明:①当直线的斜率不存在时,即

可得直线与抛物线交点坐标为:

②当直线的斜率存在时,设方程为

联立方程组,消去得:

则:

综合①②可知,直线的斜率之积为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的直角坐标为,直线与曲线的交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.

×

×

×

×

×

×

85

×

×

×

×

×

×

Ⅰ)估计顾客同时购买乙和丙的概率;

Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;

Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别为,满足

1)求的大小;

2)如图,,在直线的右侧取点,使得.当角为何值时,四边形面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点与双曲线有且只有一个公共点的直线共__________条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为1km的扇形,中心角).为方便观赏,增加收入,在种植区域外围规划观赏区(区域II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形,其中点分别在边上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.

(1)要使观赏区的年收入不低于5万元,求的最大值;

(2)试问:当为多少时,年总收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的底面是等边三角形,点在平面上的射影在内(不包括边界),.与底面所成角为;二面角的平面角为,则之间的大小关系等确定的是()

A. B.

C. 是最小角,是最大角D. 只能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

() 若函数有零点, 求实数的取值范围;

(Ⅱ) 证明: 当时, .

查看答案和解析>>

同步练习册答案