精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过点且离心率为

(Ⅰ)求椭圆的方程

(Ⅱ)设是椭圆上的点直线为坐标原点)的斜率之积为.若动点满足,试探究是否存在两个定点使得为定值若存在的坐标若不存在请说明理由

【答案】(Ⅰ); (Ⅱ)见解析.

【解析】试题分析:(Ⅰ)利用椭圆的离心率计算公式和点在椭圆上列方程组求解即可得出.
(Ⅱ)利用向量的坐标运算、点在椭圆上满足椭圆的方程、斜率计算公式及其椭圆的定义即可得出.

试题解析:

(Ⅰ)∵

又∵椭圆经过点

解得:

所以椭圆的方程为

(Ⅱ)设,则由

因为点在椭圆上,

所以

分别为直线的斜率,由题意知,

,因此

所以

所以点是椭圆上的点,

所以由椭圆的定义知存在点,满足为定值

又因为

所以坐标分别为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四边形为直角梯形,中点,交于点,沿将四边形折起,连接

(1)求证:平面;

(2)若平面平面

(I)求二面角的平面角的大小;

(II)线段上是否存在点,使平面,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

设椭圆的离心率为,其左焦点与抛物线的焦点相同.

1)求此椭圆的方程;

2)若过此椭圆的右焦点的直线与曲线只有一个交点,则

求直线的方程;

椭圆上是否存在点,使得,若存在,请说明一共有几个点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了50人,将调查情况进行整理后制成下表:

)完成被调查人员的频率分布直方图;

)若从年龄在[1525),[2535)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;

)在()的条件下,再记选中的4人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆C:相交于A,B两点,弦AB中点为M(0,1),

(1)求实数的取值范围以及直线的方程;

(2)若圆C上存在四个点到直线的距离为,求实数a的取值范围;

(3)已知N(0,3),若圆C上存在两个不同的点P,使,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列

列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为

,记甲通过的关数为

,求

的分布列和数学期望.

参考公式与数据:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,直线的参数方程为: (t为参数),它与曲线C: 相交于A,B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

同步练习册答案