【题目】已知向量,,设函数.
(1)若函数的图象关于直线对称,且时,求函数的单调增区间;
(2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.
(1)试求a的值;
(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
已知动点M到点的距离等于M到点的距离的倍.
(1)求动点M的轨迹C的方程;
(2)若直线与轨迹C没有交点,求的取值范围;
(3)已知圆与轨迹C相交于两点,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上的点,直线与(为坐标原点)的斜率之积为.若动点满足,试探究是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,底面ABCD是边长为8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.
(1)求四棱锥P﹣ABCD的体积;
(2)求证:AD⊥PB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)分析,你认为选派哪位学生参加合适?请说明理由
参考公式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com