精英家教网 > 高中数学 > 题目详情

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)根据平面向量数量积运算求解出函数,利用函数的图象关于直线对称,且可得,结合三角函数的性质可得其单调区间;(2)当时,求出函数的单调性,函数有且只有一个零点,利用其单调性求解求实数的取值范围.

试题解析:

解:向量

(1)∵函数图象关于直线对称,

,解得:,∵,∴

,由

解得:

所以函数的单调增区间为

(2)由(1)知,∵

,即时,函数单调递增;

,即时,函数单调递减.

∴当时函数有且只有一个零点.

所以满足条件的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.

(1)试求a的值;

(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知动点M到点的距离等于M到的距离的.

(1)求动点M的轨迹C的方程

(2)若直线轨迹C没有交点,求的取值范围;

(3)已知圆轨迹C相交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点且离心率为

(Ⅰ)求椭圆的方程

(Ⅱ)设是椭圆上的点直线为坐标原点)的斜率之积为.若动点满足,试探究是否存在两个定点使得为定值若存在的坐标若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中,底面ABCD是边长为8的菱形,BAD=,若PA=PD=5,平面PAD平面ABCD

(1)求四棱锥PABCD的体积;

(2)求证:ADPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面的菱形, 的中点.

(1)求证:

(2)求点到平面 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分12分甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次记录如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用茎叶图表示这两组数据;

2现要从中选派一人参加数学竞赛从统计学的角度在平均数、方差或标准差中选两个分析你认为选派哪位学生参加合适?请说明理由

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

,曲线

过点

,且在点

处的切线方程为

.

(1)求

的值;

(2)证明:当

时,

(3)若当

时,

恒成立,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4—5:不等式选讲

已知

1)关于的不等式恒成立,求实数的取值范围;

2)设,且,求证:

查看答案和解析>>

同步练习册答案