精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,直线的参数方程为: (t为参数),它与曲线C: 相交于A,B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

【答案】(1);(2)

【解析】试题分析:

(1)利用题意结合弦长公式可得弦长为

(2)利用题意,所求的长度为 .

试题解析:

(1)直线的参数方程可化为

对应的坐标代入曲线方程并化简得7t2+60t﹣125=0,

设A,B对应的参数分别为t1,t2,则

(2)由P的极坐标为,可得xp==﹣2, =2.

∴点P在平面直角坐标系下的坐标为(﹣2,2),

根据中点坐标的性质可得AB中点M对应的参数为

∴由t的几何意义可得点P到M的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点且离心率为

(Ⅰ)求椭圆的方程

(Ⅱ)设是椭圆上的点直线为坐标原点)的斜率之积为.若动点满足,试探究是否存在两个定点使得为定值若存在的坐标若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

,曲线

过点

,且在点

处的切线方程为

.

(1)求

的值;

(2)证明:当

时,

(3)若当

时,

恒成立,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上为增函数.

(1)求实数的取值范围;

(2)若函数的图象有三个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, ,D是棱AC的中点,且.

(1)求证:

(2)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4—5:不等式选讲

已知

1)关于的不等式恒成立,求实数的取值范围;

2)设,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的中心在坐标原点,焦点在轴上,焦点到短轴端点的距离为2,离心率为.

(Ⅰ)求该椭圆的方程;

(Ⅱ)若直线与椭圆交于 两点且,是否存在以原点为圆心的定圆与直线相切?若存在求出定圆的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的8道题.规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选;
(Ⅰ)求甲恰有2个题目答对的概率及甲答对题目数的数学期望与方差。
(Ⅱ)求乙答对的题目数X的分布列。

查看答案和解析>>

同步练习册答案