精英家教网 > 高中数学 > 题目详情

【题目】甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的8道题.规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选;
(Ⅰ)求甲恰有2个题目答对的概率及甲答对题目数的数学期望与方差。
(Ⅱ)求乙答对的题目数X的分布列。

【答案】(1) (2)见解析

【解析】试题解析:(甲答对题目数,由此能求出甲恰有2个题目答对的概率以及期望与方差;由题意知乙答对的题目数X的可能取值为,分别求出相应的概率,能求出的分布列.

试题解析:(Ⅰ)∵甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是

∴选中的4个题目甲恰有2个题目答对的概率P==

(Ⅱ)由题意知乙答对的题目数X的可能取值为2,3,4,

P(X=2)===

P(X=3)===

P(X=4)===

∴X的分布列为:

X

2

3

4

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,直线的参数方程为: (t为参数),它与曲线C: 相交于A,B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知yf(x)是定义在R上的奇函数x<0f(x)12x.

(1)求函数f(x)的解析式;

(2)画出函数f(x)的图像;

(3)写出函数f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数

(1)证明:

(2)若不等式的解集是非空集,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;

(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(),由此点到相邻最低点间的曲线与x轴交于点(π,0),φ∈(﹣).

(1)求这条曲线的函数解析式;

(2)写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)若曲线与曲线在点处有相同的切线,试讨论函数的单调性;

(2)若,函数上为增函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量m=(cosx,-1),n=,函数f(x)=(m+n)·m.

(1)求函数f(x)的最小正周期;

(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=,且f(A)恰是函数f(x)在上的最大值,求A,b和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:

(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;

(Ⅱ)已知该地区有, 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租型车的概率.

查看答案和解析>>

同步练习册答案