相关习题
 0  262516  262524  262530  262534  262540  262542  262546  262552  262554  262560  262566  262570  262572  262576  262582  262584  262590  262594  262596  262600  262602  262606  262608  262610  262611  262612  262614  262615  262616  262618  262620  262624  262626  262630  262632  262636  262642  262644  262650  262654  262656  262660  262666  262672  262674  262680  262684  262686  262692  262696  262702  262710  266669 

科目: 来源: 题型:

【题目】某厂生产的某种零件的尺寸大致服从正态分布,且规定尺寸为次品,其余的为正品.生产线上的打包机自动把每5件零件打包成1箱,然后进入销售环节,若每销售一件正品可获利50元,每销售一件次品亏损100元.现从生产线生产的零件中抽样20箱做质量分析,作出的频率分布直方图如下:

1)估计生产线生产的零件的次品率及零件的平均尺寸;

2)从生产线上随机取一箱零件,求这箱零件销售后的期望利润及不亏损的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4sinθ.

(Ⅰ)写出直线l和曲线C的普通方程;

(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四边形为直角梯形,为矩形,平面平面

1)若点中点,求证:平面

2)若点为线段上一动点,求与平面所成角的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位为了响应疫情期间有序复工复产的号召,组织从疫区回来的甲、乙、丙、丁4名员工进行核酸检测,现采用抽签法决定检测顺序,在员工甲不是第一个检测,员工乙不是最后一个检测的条件下,员工丙第一个检测的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知不经过原点的直线在两坐标轴上的截距相等,且点在直线.

1)求直线的方程;

2)过点作直线,若直线轴围成的三角形的面积为2,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥底面上一点,且.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的有(

①在回归分析中,可以借助散点图判断两个变量是否呈线性相关关系.

②在回归分析中,可以通过残差图发现原始数据中的可疑数据,残差平方和越小,模型的拟合效果越好.

③在回归分析模型中,相关系数的绝对值越大,说明模型的拟合效果越好.

④在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位.

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=ex-x2+axR,曲线y=fx)在(0,f(0))处的切线方程为y=bx

(1)求fx)的解析式;

(2)当xR时,求证:fx)≥-x2+x

(3)若fx)≥kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学高二年级组织外出参加学业水平考试,出行方式为:乘坐学校定制公交或自行打车前往,大数据分析显示,当的学生选择自行打车,自行打车的平均时间为 (单位:分钟) ,而乘坐定制公交的平均时间不受影响,恒为40分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,乘坐定制公交的平均时间少于自行打车的平均时间?

(2)求该校学生参加考试平均时间的表达式:讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018海南高三阶段性测试(二模)如图,在直三棱柱中, ,点的中点,点上一动点.

I)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.

II)若点的中点且,求三棱锥的体积.

查看答案和解析>>

同步练习册答案