科目: 来源: 题型:
【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1千多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑指四个面均为直角三角形的四面体.如图,在堑堵中,.
(1)求证:四棱锥为阳马;并判断四面体是否为鳖臑,若是,请写出各个面的直角(要求写出结论).
(2)若,当阳马体积最大时,求二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】男运动员6名,女运动员4名,其中男女队长各1名.选派5人外出比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
查看答案和解析>>
科目: 来源: 题型:
【题目】有一段“三段论”,其推理是这样的:对于可导函数,若,则是函数的极值点,因为函数满足,所以是函数的极值点”,结论以上推理
A. 大前提错误B. 小前提错误C. 推理形式错误D. 没有错误
查看答案和解析>>
科目: 来源: 题型:
【题目】正四棱锥的底面正方形边长是3,是在底面上的射影,,是上的一点,过且与、都平行的截面为五边形.
(1)在图中作出截面,并写出作图过程;
(2)求该截面面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业。经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产万件,需另投入流动成本为万元,且,每件产品售价为10元。经市场分析,生产的产品当年能全部售完。
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,DA=DC=2,,E是C1D1的中点,F是CE的中点.
(1)求证:EA∥平面BDF;
(2)求证:平面BDF⊥平面BCE;
(3)求二面角D﹣EB﹣C的正切值.
查看答案和解析>>
科目: 来源: 题型:
【题目】电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”, 并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少,“铁杆足球迷”愿意前往观看的人数会减少.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?
查看答案和解析>>
科目: 来源: 题型:
【题目】某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值(值越大产品的性能越好)与这种新合金材料的含量(单位:克)的关系:当时,是的二次函数;当时,.测得部分数据如表所示.
0 | 2 | 6 | 10 | … | |
-4 | 8 | 8 | … |
(1)求关于的函数关系式;
(2)求该新合金材料的含量为何值时产品的性能达到最佳.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com