相关习题
 0  262749  262757  262763  262767  262773  262775  262779  262785  262787  262793  262799  262803  262805  262809  262815  262817  262823  262827  262829  262833  262835  262839  262841  262843  262844  262845  262847  262848  262849  262851  262853  262857  262859  262863  262865  262869  262875  262877  262883  262887  262889  262893  262899  262905  262907  262913  262917  262919  262925  262929  262935  262943  266669 

科目: 来源: 题型:

【题目】已知函数.

①求证:在区间上单调递减;

②求函数在区间上的值域.

对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为为圆上的点,分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起使得重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题正确的是(

A.若函数上有零点,则一定有

B.函数既不是奇函数也不是偶函数

C.若函数的值域为,则实数的取值范围是

D.若函数满足条件,则

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题正确的是(

A.已知随机变量,若.

B.已知分类变量的随机变量的观察值为,则当的值越大时,有关的可信度越小.

C.在线性回归模型中,计算其相关指数,则可以理解为:解析变量对预报变量的贡献率约为

D.若对于变量组统计数据的线性回归模型中,相关指数.又知残差平方和为.那么.(注意:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,的中点为,且平面

(1)证明:

(2)若,试画出二面角的平面角,并求它的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列几个命题,是真命题有(

A.,则

B.若复数满足,则

C.给定两个命题.的必要而不充分条件,则的充分不必要条件

D.命题,则

查看答案和解析>>

科目: 来源: 题型:

【题目】为丰富市民的文化生活,市政府计划在一块半径为100m的扇形土地OAB上建造市民广场.规划设计如图:矩形EFGH(其中E,F在圆弧AB上,G,H在弦AB上)区域为运动休闲区,△OAB区域为文化展示区,其余空地为绿化区域,已知P为圆弧AB中点,OPABM,cos∠POB=,记矩形EFGH区域的面积为Sm2

(1)设∠POF=θ(rad),将S表示成θ的函数;

(2)求矩形EFGH区域的面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表

分组

频数

频率

10

20

50

20

合计

100

(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;

(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).

查看答案和解析>>

科目: 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=aln(x+1)+x2+1,g(x)=﹣x2﹣2mx+4.

(1)当a>0时,求曲线y=f(x)的切线斜率的取值范围;

(2)当a=﹣4时,若存在x1∈[0,1],x2∈[1,2],满足f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

同步练习册答案