科目: 来源: 题型:
【题目】如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
为圆
上的点,
,
,
,
分别是以
为底边的等腰三角形.沿虚线剪开后,分别以
为折痕折起
,
,
,
使得
重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为__________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题正确的是( )
A.若函数
在
上有零点,则一定有![]()
B.函数
既不是奇函数也不是偶函数
C.若函数
的值域为
,则实数
的取值范围是![]()
D.若函数
满足条件
,
,则
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题正确的是( )
A.已知随机变量
,若
.则![]()
B.已知分类变量
与
的随机变量
的观察值为
,则当
的值越大时,“
与
有关”的可信度越小.
C.在线性回归模型中,计算其相关指数
,则可以理解为:解析变量对预报变量的贡献率约为![]()
D.若对于变量
与
的
组统计数据的线性回归模型中,相关指数
.又知残差平方和为
.那么
.(注意:
)
查看答案和解析>>
科目: 来源: 题型:
【题目】下列几个命题,是真命题有( )
A.若
,则![]()
B.若复数
,
满足
,则![]()
C.给定两个命题
,
.若
是
的必要而不充分条件,则
是
的充分不必要条件
D.命题
:
,
,
,则
:
,
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】为丰富市民的文化生活,市政府计划在一块半径为100m的扇形土地OAB上建造市民广场.规划设计如图:矩形EFGH(其中E,F在圆弧AB上,G,H在弦AB上)区域为运动休闲区,△OAB区域为文化展示区,其余空地为绿化区域,已知P为圆弧AB中点,OP交AB于M,cos∠POB=
,记矩形EFGH区域的面积为Sm2.
![]()
(1)设∠POF=θ(rad),将S表示成θ的函数;
(2)求矩形EFGH区域的面积S的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某制造商
月生产了一批乒乓球,随机抽样
个进行检查,测得每个球的直径(单位:mm),将数据分组如下表
分组 | 频数 | 频率 |
| 10 | |
| 20 | |
| 50 | |
| 20 | |
合计 | 100 |
![]()
(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间
的中点值是
)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
查看答案和解析>>
科目: 来源: 题型:
【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(I)求应从小学、中学、大学中分别抽取的学校数目。
(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2所学校均为小学的概率。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=aln(x+1)+x2+1,g(x)=﹣x2﹣2mx+4.
(1)当a>0时,求曲线y=f(x)的切线斜率的取值范围;
(2)当a=﹣4时,若存在x1∈[0,1],x2∈[1,2],满足f(x1)≥g(x2),求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com