精英家教网 > 高中数学 > 题目详情

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

【答案】(1)3,2,1 (2)

【解析】

(1)从小学、中学、大学中分别抽取的学校数目为321

(2)①在抽取到的6所学校中,3所小学分别记为A1A2A3,2所中学分别记为A4A5,大学记为A6,则抽取2所学校的所有可能结果为{A1A2}{A1A3}{A1A4}{A1A5}{A1A6}{A2A3}{A2A4}{A2A5}{A2A6}{A3A4}{A3A5}{A3A6}{A4A5}{A4A6}{A5A6},共15种.

6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1A2}{A1A3}{A2A3},共3种.

所以P(B)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为轮船的最大速度为15海里小时当船速为10海里小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元假定运行过程中轮船以速度v匀速航行.

k的值;

求该轮船航行100海里的总费用燃料费航行运作费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】π为圆周率,e=2.71828…为自然对数的底数.
(1)求函数f(x)= 的单调区间;
(2)求e3 , 3e , eπ , πe , 3π , π3这6个数中的最大数和最小数;
(3)将e3 , 3e , eπ , πe , 3π , π3这6个数按从小到大的顺序排列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知标准方程下的椭圆的焦点在轴上,且经过点它的一个焦点恰好与抛物线的焦点重合.椭圆的上顶点为过点的直线交椭圆于两点,连接,记直线的斜率分别为.

(1)求椭圆的标准方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线(b>a>0),O为坐标原点,离心率,点在双曲线上.

(1)求双曲线的方程;

(2)若直线与双曲线交于P、Q两点,且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C: + =1,直线l: (t为参数)
(1)写出曲线C的参数方程,直线l的普通方程.
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.

(1)求出y关于x的函数解析式及x的取值范围;

(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩阵A的逆矩阵A1=( ).
(1)求矩阵A;
(2)求矩阵A1的特征值以及属于每个特征值的一个特征向量.

查看答案和解析>>

同步练习册答案