精英家教网 > 高中数学 > 题目详情

【题目】已知矩阵A的逆矩阵A1=( ).
(1)求矩阵A;
(2)求矩阵A1的特征值以及属于每个特征值的一个特征向量.

【答案】
(1)解:设A= ,则由AA1=E得 =

解得a= ,b=﹣ ,c=﹣ ,d= ,所以A=


(2)解:矩阵A1的特征多项式为f(λ)= =(λ﹣2)2﹣1,

令f(λ)=(λ﹣2)2﹣1=0,可求得特征值为λ1=1,λ2=3,

设λ1=1对应的一个特征向量为α=

则由λ1α=Mα,得x+y=0

得x=﹣y,可令x=1,则y=﹣1,

所以矩阵M的一个特征值λ1=1对应的一个特征向量为

同理可得矩阵M的一个特征值λ2=3对应的一个特征向量为


【解析】(1)利用AA1=E,建立方程组,即可求矩阵A;(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的二次项系数为a(a<0).1,3是函数y=f(x)+2x的两个零点.若方程f(x)+6a=0有两个相等的根,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:
①顾客所获的奖励额为60元的概率;
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中的第二项和第三项的系数相等.

(1)求的值;

(2)求展开式中所有二项式系数的和;

(3)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在,使成立,则称的不动点.已知函数 .

1)当时,求函数的不动点;

2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;

3)在(2)的条件下,若的两个不动点为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学采取分层抽样的方法从应届高三学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.

文科

2

5

理科

10

3

(1)若在该样本中从报考文科的女学生A.B.C.D.E中随机地选出2人召开座谈会,试求2人中有A的概率;

(2)用假设检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?

参考公式和数据:.

P()

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.07

2.71

3.84

5.02

6.64

7.88

10.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

总计

男性市民

女性市民

总计

(1)根据已知数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过的前提下认为支持申办年足球世界杯与性别有关?请说明理由.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的三条对边分别为.

(1)求

(2)点在边上,,求.

查看答案和解析>>

同步练习册答案