精英家教网 > 高中数学 > 题目详情

【题目】中,角的三条对边分别为.

(1)求

(2)点在边上,,求.

【答案】(1);(2)2

【解析】

(1)由题意利用正弦定理与三角恒等变换求出sinB与cosB的关系,得出tanB的值,从而求出B的值;

(2)根据互补的两角正弦值相等,得到sin∠ADB=sin∠ADC的值,再利用正弦、余弦定理求得ADAC的值.

(1)由bcosCbsinCa

利用正弦定理得:sinBcosCsinBsinC=sinA

即sinBcosCsinBsinC=sinBcosC+cosBsinC

sinBsinC=cosBsinC

C∈(0,π),所以sinC≠0,

所以sinB=cosB

得tanB

B∈(0,π),所以B

(2)如图所示,

由cos∠ADC,∠ADC∈(0,π),

所以sin∠ADC

由因为∠ADB=π﹣∠ADC

所以sin∠ADB=sin∠ADC

在△ABD中,由正弦定理得,

AB=4,B

所以AD

在△ACD中,由余弦定理得,

AC2AD2+DC2﹣2ADDCcos∠ADC

24,

解得AC=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知矩阵A的逆矩阵A1=( ).
(1)求矩阵A;
(2)求矩阵A1的特征值以及属于每个特征值的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不相等的非零向量 ,两组向量 均由2个 和3个 排列而成,记S= + + + + ,Smin表示S所有可能取值中的最小值.则下列命题正确的是(写出所有正确命题的编号).
①S有5个不同的值;
②若 ,则Smin与| |无关;
③若 ,则Smin与| |无关;
④若| |>4| |,则Smin>0;
⑤若| |=2| |,Smin=8| |2 , 则 的夹角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.

(1)证明:Q为BB1的中点;
(2)求此四棱柱被平面α所分成上下两部分的体积之比;
(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)若方程上有两个不等实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ ab=c2
(1)求C;
(2)设cosAcosB= = ,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图F1、F2是椭圆C1 +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的奇函数,且当x0时,fx)=x2+2x.现已画出函数fx)在y轴左侧的图象如图所示,

(1)画出函数fx),xR剩余部分的图象,并根据图象写出函数fx),xR的单调区间;(只写答案)

2)求函数fx),xR的解析式.

查看答案和解析>>

同步练习册答案