【题目】已知双曲线(b>a>0),O为坐标原点,离心率,点在双曲线上.
(1)求双曲线的方程;
(2)若直线与双曲线交于P、Q两点,且.求|OP|2+|OQ|2的最小值.
【答案】1 ;2.
【解析】试题分析:
(Ⅰ) 由,可得,故双曲线方程为,代入点的坐标可得,由此可得双曲线方程. (Ⅱ)根据直线的斜率存在与否分两种情况求解.当斜率存在时,可根据一元二次方程根与系数的关系及两点间的距离公式求解即可.当斜率不存在时直接计算可得结果.
试题解析:
(1)由,可得,
∴,
∴ 双曲线方程为,
∵ 点在双曲线上,
∴,
解得 ,
∴ 双曲线的方程为.
(2)①当直线的斜率存在时,设直线的方程为,
由消去y整理得,
∵直线与双曲线交于两点,
∴.
设,,
则,
由得到:,
即,
∴,
化简得.
∴,
当时上式取等号,且方程(*)有解.
②当直线的斜率不存在时,设直线的方程为,则有,
由可得,
可得,解得.
∴.
∴ .
综上可得的最小值是24.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,|an+1﹣an|=pn , n∈N* .
(1)若{an}是递增数列,且a1 , 2a2 , 3a3成等差数列,求p的值;
(2)若p= ,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间 ,,,,进行分组,得到频率分布条形图如图.
(1)求图中的值;
(2)空气质量状况分别为轻微污染或轻度污染定为空气质量Ⅲ级,求一年中空气质量为Ⅲ级的天数
(3)小张到该城市出差一天,这天空气质量为优良的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(I)求应从小学、中学、大学中分别抽取的学校数目。
(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2所学校均为小学的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在,使成立,则称为的不动点.已知函数 .
(1)当,时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若的两个不动点为,,且,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com