精英家教网 > 高中数学 > 题目详情

【题目】已知标准方程下的椭圆的焦点在轴上,且经过点它的一个焦点恰好与抛物线的焦点重合.椭圆的上顶点为过点的直线交椭圆于两点,连接,记直线的斜率分别为.

(1)求椭圆的标准方程;

(2)求的值.

【答案】(1) (2) 见解析;3 .

【解析】试题分析:(1)由抛物线的焦点为得到椭圆的两个焦点坐标为 再根据椭圆的定义得到 即可求得椭圆的标准方程

(2)由题意,设直线的方程为并代入椭圆方程求得,化简运算,即可求得的值.

试题解析:

(1)设椭圆的标准方程为抛物线的焦点为,所以该椭圆的两个焦点坐标为 ,根据椭圆的定义有 ,所以椭圆的标准方程为

(2)由条件知直线的斜率存在.设直线的方程为并代入椭圆方程,且设点由根与系数的韦达定理得

,即为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程是(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=-2cosθ.

(1)写出C1的极坐标方程和C2的直角坐标方程;

(2)已知点M1M2的极坐标分别是(1,π)、(2,),直线M1M2与曲线C2相交于PQ两点,射线OP与曲线C1相交于点A,射线OQ与曲线C1相交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,分别是的中点.

1)证明:平面

2)证明:

3)若,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,﹣2),椭圆E: + =1(a>b>0)的离心率为 ,F是椭圆的焦点,直线AF的斜率为 ,O为坐标原点.
(1)求E的方程;
(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的离心率为,过点A(0,-b)B(a,0)的直线与原点的距离为.

(1)求双曲线C的方程;

(2)直线ykxm(k≠0, m≠0)与该双曲线C交于不同的两点CD,且CD两点都在以点A为圆心的同一圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中的第二项和第三项的系数相等.

(1)求的值;

(2)求展开式中所有二项式系数的和;

(3)求展开式中所有的有理项.

查看答案和解析>>

同步练习册答案