相关习题
 0  263297  263305  263311  263315  263321  263323  263327  263333  263335  263341  263347  263351  263353  263357  263363  263365  263371  263375  263377  263381  263383  263387  263389  263391  263392  263393  263395  263396  263397  263399  263401  263405  263407  263411  263413  263417  263423  263425  263431  263435  263437  263441  263447  263453  263455  263461  263465  263467  263473  263477  263483  263491  266669 

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线垂直,求直线的方程;

(Ⅱ)当时,且,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从某市移动支付用户中随机抽取100人进行调查,得到如下数据:

每周移动支付次数

1

2

3

4

5

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

总计

15

12

13

7

8

45

1)把每周使用移动支付6次及以上的用户称为“移动支付达人”,按分层抽样的方法,从参与调查的“移动支付达人”中,随机抽取6人,求抽取的6人中,男、女用户各多少人;

2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,根据表格中的数据完成下列列联表,问:能否有的把握认为“移动支付活跃用户”与性别有关?

非移动支付活跃用户

移动支付活跃用户

总计

总计

附参照表:

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

参考公式:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众,调查结果如下面的2×2列联表.

非体育迷

体育迷

总计

30

15

45

45

10

55

总计

75

25

100

1)据此资料判断是否有90%的把握认为体育迷与性别有关.

2)将日均收看该体育项目不低于50分钟的观众称为超级体育迷,已知超级体育迷共有5人,其中女性2名,男性3名,若从超级体育迷中任意选取2人,求至少有1名女性观众的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,抛物线 与抛物线 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.

(1)若直线与抛物线交于点 ,且,求

(2)证明: 的面积与四边形的面积之比为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为, 直线ly轴交于点P0m),与椭圆C交于相异两点AB,且.

1)求椭圆方程;

2)求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法错误的是(

A.在回归直线方程中,当解释变量x每增加1个单位时,预报变量平均增加个单位.

B.对分类变量XY,随机变量的观测值k越大,则判断XY有关系的把握程度越小.

C.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.

D.回归直线过样本点的中心.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)在图中作出点在底面的正投影,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】国际奥委会将于2017915日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50

80

年龄大于50

10

合计

70

100

1)根据已知数据,把表格数据填写完整;

2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?

3)已知在被调查的年龄大于50岁的支持者中有6名女性,其中2名是女教师.现从这6名女性中随机抽取2名,求恰有1名女教师的概率.

附:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥,且分别是棱的中点.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成的角的正弦值.

查看答案和解析>>

同步练习册答案