科目: 来源: 题型:
【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为
.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用
表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量
的分布列和数学期望;
(Ⅱ)设
为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件
发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从某市移动支付用户中随机抽取100人进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
总计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及以上的用户称为“移动支付达人”,按分层抽样的方法,从参与调查的“移动支付达人”中,随机抽取6人,求抽取的6人中,男、女用户各多少人;
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,根据表格中的数据完成下列
列联表,问:能否有
的把握认为“移动支付活跃用户”与性别有关?
非移动支付活跃用户 | 移动支付活跃用户 | 总计 | |
男 | |||
女 | |||
总计 |
附参照表:
| 0.10 | 0.05 | 0.025 | 0.01 |
| 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:
,其中![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众,调查结果如下面的2×2列联表.
“非体育迷” | “体育迷” | 总计 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
总计 | 75 | 25 | 100 |
(1)据此资料判断是否有90%的把握认为“体育迷”与性别有关.
(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”共有5人,其中女性2名,男性3名,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,抛物线
:
与抛物线
:
异于原点
的交点为
,且抛物线
在点
处的切线与
轴交于点
,抛物线
在点
处的切线与
轴交于点
,与
轴交于点
.
(1)若直线
与抛物线
交于点
,
,且
,求
;
(2)证明:
的面积与四边形
的面积之比为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率
,椭圆上的点到焦点的最短距离为
, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
.
(1)求椭圆方程;
(2)求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法错误的是( )
A.在回归直线方程
中,当解释变量x每增加1个单位时,预报变量
平均增加
个单位.
B.对分类变量X与Y,随机变量
的观测值k越大,则判断“X与Y有关系”的把握程度越小.
C.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.
D.回归直线过样本点的中心
.
查看答案和解析>>
科目: 来源: 题型:
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 80 | ||
年龄大于50岁 | 10 | ||
合计 | 70 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?
(3)已知在被调查的年龄大于50岁的支持者中有6名女性,其中2名是女教师.现从这6名女性中随机抽取2名,求恰有1名女教师的概率.
附:
,
,
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com