相关习题
 0  263306  263314  263320  263324  263330  263332  263336  263342  263344  263350  263356  263360  263362  263366  263372  263374  263380  263384  263386  263390  263392  263396  263398  263400  263401  263402  263404  263405  263406  263408  263410  263414  263416  263420  263422  263426  263432  263434  263440  263444  263446  263450  263456  263462  263464  263470  263474  263476  263482  263486  263492  263500  266669 

科目: 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中有大小、形状完全相同的四个小球,分别写有和、“谐”、“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】小赵和小王约定在早上7:007:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某知名电商在双十一购物狂欢节中成交额再创新高,日单日成交额达亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和购物评价为满意的年龄层次频数分布表.年龄层次的频率分布直方图:

“购物评价为满意”的年龄层次频数分布表:

年龄(岁)

频数

1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);

2)若年龄在岁以下的称为青年买家,年龄在岁以上(含岁)的称为中年买家,完成下面的列联表,并判断能否有的把握认为中、青年买家对此次活动的评价有差异?

评价满意

评价不满意

合计

中年买家

青年买家

合计

附:参考公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线M的极坐标方程为.

1)求C的极坐标方程和曲线M的直角坐标方程;

2)若MC只有1个公共点P,求m的值与P的极坐标().

查看答案和解析>>

科目: 来源: 题型:

【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

经济损失

4000元以下

经济损失

4000元以上

合计

捐款超过500元

30

捐款低于500元

6

合计

(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?

(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.

附:临界值表

参考公式: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.

(1)求椭圆的方程;

(2)不经过点的直线)与椭圆交于两点,关于原点的对称点为(与点不重合),直线轴分别交于两点,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,是以PF为底边的等腰三角形,PA平行于x轴,点,且点P在直线上运动.记点A的轨迹为C.

1)求C的方程.

2)直线AFC的另一个交点为B,等腰底边的中线与直线的交点为Q,试问的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数R.

(1)讨论的单调性;

(2)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图在四棱锥中,是边长为2的等边三角形,Q为四边形的外接圆的圆心,平面M在棱上,且.

1)证明:平面.

2)若与平面所成角为60°,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案